1
|
Zhang S, Zhong R, Younis MR, He H, Xu H, Li G, Yang R, Lui S, Wang Y, Wu M. Hydrogel Applications in the Diagnosis and Treatment of Glioblastoma. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65754-65778. [PMID: 39366948 DOI: 10.1021/acsami.4c11855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Glioblastoma multiforme (GBM), a common malignant neurological tumor, has boundaries indistinguishable from those of normal tissue, making complete surgical removal ineffective. The blood-brain barrier (BBB) further impedes the efficacy of radiotherapy and chemotherapy, leading to suboptimal treatment outcomes and a heightened probability of recurrence. Hydrogels offer multiple advantages for GBM diagnosis and treatment, including overcoming the BBB for improved drug delivery, controlled drug release for long-term efficacy, and enhanced relaxation properties of magnetic resonance imaging (MRI) contrast agents. Hydrogels, with their excellent biocompatibility and customizability, can mimic the in vivo microenvironment, support tumor cell culture, enable drug screening, and facilitate the study of tumor invasion and metastasis. This paper reviews the classification of hydrogels and recent research for the diagnosis and treatment of GBM, including their applications as cell culture platforms and drugs including imaging contrast agents carriers. The mechanisms of drug release from hydrogels and methods to monitor the activity of hydrogel-loaded drugs are also discussed. This review is intended to facilitate a more comprehensive understanding of the current state of GBM research. It offers insights into the design of integrated hydrogel-based GBM diagnosis and treatment with the objective of achieving the desired therapeutic effect and improving the prognosis of GBM.
Collapse
Affiliation(s)
- Shuaimei Zhang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Renming Zhong
- Radiotherapy Physics & Technology Center, Cancer Center, West China Hospital, Chengdu, Sichuan 610041, P. R. China
| | - Muhammad Rizwan Younis
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Hualong He
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Hong Xu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Gaocan Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Ruiyan Yang
- Department of Biology, Macalester College, Saint Paul, Minnesota 55105, United States
| | - Su Lui
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Min Wu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan 610041, P. R. China
| |
Collapse
|
2
|
Liang J, He P. A reference for selecting an appropriate method for generating glioblastoma organoids from the application perspective. Discov Oncol 2024; 15:459. [PMID: 39292297 PMCID: PMC11411047 DOI: 10.1007/s12672-024-01346-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024] Open
Abstract
Glioblastoma organoids (GBOs) serve as a powerful and reliable tool to study glioblastoma stem cells (GSCs) and glioblastoma (GBM). GBOs can be derived from different materials using different methods. To identify the predominant generation methods and the most applications of GBOs, we searched four databases (PubMed, Embase, Web of Science, and Wiley Online Laboratory) from August 2021 to August 2023. After screening, 42 out of 295 articles were included and analyzed. GBOs in these articles were generated using only one material, such as tumor tissues, tumor cells, and gene-edited multifunctional stem cells, or simultaneously using two materials, such as tumor cells and normal organoids. Methodologically, direct cultivation of GBM cells or tissues was the most commonly used method to generate GBOs. Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) were the frequently used multifunctional stem cells to generate GBOs by simultaneously silencing P53, NF1, and PTEN using CRISPR/Cas9. In terms of applications, GBOs generated by direct cultivation of GBM tissue had the most applications, including molecular mechanisms, therapy, and culture technique. This review provides a theoretical reference for selecting an appropriate method to generate GBOs when studying GSCs and GBM.
Collapse
Affiliation(s)
- Jing Liang
- Department of Operating Room, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Peng He
- Department of Biobank, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
3
|
Wang L, Hu D, Xu J, Hu J, Wang Y. Complex in vitro Model: A Transformative Model in Drug Development and Precision Medicine. Clin Transl Sci 2023; 17:e13695. [PMID: 38062923 PMCID: PMC10828975 DOI: 10.1111/cts.13695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/25/2023] [Accepted: 11/18/2023] [Indexed: 02/02/2024] Open
Abstract
In vitro and in vivo models play integral roles in preclinical drug research, evaluation, and precision medicine. In vitro models primarily involve research platforms based on cultured cells, typically in the form of two-dimensional (2D) cell models. However, notable disparities exist between 2D cultured cells and in vivo cells across various aspects, rendering the former inadequate for replicating the physiologically relevant functions of human or animal organs and tissues. Consequently, these models failed to accurately reflect real-life scenarios post-drug administration. Complex in vitro models (CIVMs) refer to in vitro models that integrate a multicellular environment and a three-dimensional (3D) structure using bio-polymer or tissue-derived matrices. These models seek to reconstruct the organ- or tissue-specific characteristics of the extracellular microenvironment. The utilization of CIVMs allows for enhanced physiological correlation of cultured cells, thereby better mimicking in vivo conditions without ethical concerns associated with animal experimentation. Consequently, CIVMs have gained prominence in disease research and drug development. This review aimed to comprehensively examine and analyze the various types, manufacturing techniques, and applications of CIVM in the domains of drug discovery, drug development, and precision medicine. The objective of this study was to provide a comprehensive understanding of the progress made in CIVMs and their potential future use in these fields.
Collapse
Affiliation(s)
- Luming Wang
- Department of Thoracic SurgeryThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang ProvinceHangzhouChina
| | - Danping Hu
- Hangzhou Chexmed Technology Co., Ltd.HangzhouChina
| | - Jinming Xu
- Department of Thoracic SurgeryThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang ProvinceHangzhouChina
| | - Jian Hu
- Department of Thoracic SurgeryThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang ProvinceHangzhouChina
| | - Yifei Wang
- Hangzhou Chexmed Technology Co., Ltd.HangzhouChina
| |
Collapse
|
4
|
Luo L, Liu L, Ding Y, Dong Y, Ma M. Advances in biomimetic hydrogels for organoid culture. Chem Commun (Camb) 2023; 59:9675-9686. [PMID: 37455615 DOI: 10.1039/d3cc01274c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
An organoid is a 3-dimensional (3D) cell culture system that mimics the structural and functional characteristics of organs, and it has promising applications in regenerative medicine, precision drug screening and personalised therapy. However, current culture techniques of organoids usually use mouse tumour-derived scaffolds (Matrigel) or other animal-derived decellularised extracellular matrices as culture systems with poorly defined components and undefined chemical and physical properties, which limit the growth of organoids and the reproducibility of culture conditions. In contrast, some synthetic culture materials have emerged in recent years with well-defined compositions, and flexible adjustment and optimisation of physical and chemical properties, which can effectively support organoid growth and development and prolong survival time of organoid in vitro. In this review, we will introduce the challenge of animal-derived decellularised extracellular matrices in organoid culture, and summarise the categories of biomimetic hydrogels currently used for organoid culture, and then discuss the future opportunities and perspectives in the development of advanced hydrogels in organoids. We hope that this review can promote academic communication in the field of organoid research and provide some assistance in advancing the development of organoid cultivation technology.
Collapse
Affiliation(s)
- Lili Luo
- Department of Nutrition and Health, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, P. R. China.
| | - Libing Liu
- Department of Nutrition and Health, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, P. R. China.
| | - Yuxuan Ding
- Department of Nutrition and Health, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, P. R. China.
| | - Yixuan Dong
- Department of Nutrition and Health, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, P. R. China.
| | - Min Ma
- Department of Nutrition and Health, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, P. R. China.
| |
Collapse
|