1
|
Zhang D, Zhao J, Zhang Y, Jiang H, Liu D. Revisiting immune checkpoint inhibitors: new strategies to enhance efficacy and reduce toxicity. Front Immunol 2024; 15:1490129. [PMID: 39720720 PMCID: PMC11666542 DOI: 10.3389/fimmu.2024.1490129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/25/2024] [Indexed: 12/26/2024] Open
Affiliation(s)
- Dianying Zhang
- Medical Education Department, Guangdong Provincial People’s Hospital, Zhuhai Hospital (Jinwan Central Hospital of Zhuhai), Zhuhai, China
| | - Jingjing Zhao
- Sleep Medicine Center, Huai’an No.3 People’s Hospital, Huai’an, China
- Huaian Second Clinical College of Xuzhou Medical University, Huaian, China
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China
| | - Hongfei Jiang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China
| | - Dan Liu
- Medical Education Department, Guangdong Provincial People’s Hospital, Zhuhai Hospital (Jinwan Central Hospital of Zhuhai), Zhuhai, China
| |
Collapse
|
2
|
Sha T, Wang Z, Li J, Wu Y, Qiang J, Yang Z, Hu Y, Zheng K, Zhang S, Sun H, Whittaker AK, Yang B, Sun H, Lin Q, Shi C. One arrow two eagles: Multifunctional nano-system for macrophage reprogramming and osteoclastogenesis inhibition against inflammatory osteolysis. Mater Today Bio 2024; 29:101285. [PMID: 39435372 PMCID: PMC11492609 DOI: 10.1016/j.mtbio.2024.101285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/12/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
Inflammatory osteolysis poses a significant worldwide threat to public health. However, current monotherapies, which target either the prevention of the inflammatory response or the attenuation of osteoclast (OC) formation, have limited efficacy due to the complexity of the bone immune system being overlooked. Herein, by means of modifying salmon calcitonin (sCT), a multifunctional nano-system (AuNDs-sCT) was designed to synergistically inhibit OC differentiation and reverse the inflammatory microenvironment against inflammatory osteolysis. On the one hand, AuNDs-sCT effectively restrained OC differentiation by binding to the calcitonin receptors on the surface of OC precursors, resulting in the down-regulation of OC-specific genes and proteins. The targeted capacity of AuNDs-sCT provided a more durable and precise therapeutic effect. On the other hand, AuNDs-sCT exhibited antioxidant and anti-inflammatory effects, which regulated the polarization "switch" from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype in macrophages by the inhibition of NF-κB p65 phosphorylation, thereby effectively reversed the local inflammatory microenvironment. Additionally, AuNDs-sCT served as a promising fluorescent probe, enabling real-time visualization of the therapeutic process. This capability is expected to optimize drug administration and evaluate therapeutic effects. In summary, by inhibiting OC differentiation and reprogramming macrophages, AuNDs-sCT successfully realized drug repurposing and achieved the "one arrow two eagles" therapeutic strategy, which offers a synergistic and effective treatment option for the clinical management of inflammatory osteolysis.
Collapse
Affiliation(s)
- Tong Sha
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, PR China
| | - Ze Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Jinwei Li
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, PR China
| | - Yahong Wu
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, PR China
| | - Jinbiao Qiang
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, PR China
| | - Zhenming Yang
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, PR China
| | - Yue Hu
- School and Hospital of Stomatology, China Medical University, Shenyang, PR China
| | - Kaijuan Zheng
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, PR China
| | - Shuyu Zhang
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, PR China
| | - Haizhu Sun
- Key Laboratory of Sustained and Advanced Functional Materials, College of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Andrew K. Whittaker
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, QLD 4072, Australia
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Hongchen Sun
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, PR China
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Ce Shi
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, PR China
| |
Collapse
|
3
|
Sabu A, Kandel M, Sarma RR, Ramesan L, Roy E, Sharmila R, Chiu HC. Heterojunction semiconductor nanocatalysts as cancer theranostics. APL Bioeng 2024; 8:041502. [PMID: 39381587 PMCID: PMC11459490 DOI: 10.1063/5.0223718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024] Open
Abstract
Cancer nanotechnology is a promising area of cross-disciplinary research aiming to develop facile, effective, and noninvasive strategies to improve cancer diagnosis and treatment. Catalytic therapy based on exogenous stimulus-responsive semiconductor nanomaterials has shown its potential to address the challenges under the most global medical needs. Semiconductor nanocatalytic therapy is usually triggered by the catalytic action of hot electrons and holes during local redox reactions within the tumor, which represent the response of nontoxic semiconductor nanocatalysts to pertinent internal or external stimuli. However, careful architecture design of semiconductor nanocatalysts has been the major focus since the catalytic efficiency is often limited by facile hot electron/hole recombination. Addressing these challenges is vital for the progress of cancer catalytic therapy. In recent years, diverse strategies have been developed, with heterojunctions emerging as a prominent and extensively explored method. The efficiency of charge separation under exogenous stimulation can be heightened by manipulating the semiconducting performance of materials through heterojunction structures, thereby enhancing catalytic capabilities. This review summarizes the recent applications of exogenous stimulus-responsive semiconducting nanoheterojunctions for cancer theranostics. The first part of the review outlines the construction of different heterojunction types. The next section summarizes recent designs, properties, and catalytic mechanisms of various semiconductor heterojunctions in tumor therapy. The review concludes by discussing the challenges and providing insights into their prospects within this dynamic and continuously evolving field of research.
Collapse
Affiliation(s)
- Arjun Sabu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Manoj Kandel
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Ritwick Ranjan Sarma
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Lakshminarayan Ramesan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Ekta Roy
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Ramalingam Sharmila
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsin-Cheng Chiu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
4
|
Wen Y, Li Y, Li BB, Liu P, Qiu M, Li Z, Xu J, Bi B, Zhang S, Deng X, Liu K, Zhou S, Wang Q, Zhao J. Pyroptosis induced by natural products and their derivatives for cancer therapy. Biomater Sci 2024; 12:5656-5679. [PMID: 39429101 DOI: 10.1039/d4bm01023j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Natural products, which are compounds extracted and/or refined from plants and microbes in nature, have great potential for the discovery of therapeutic agents, especially for infectious diseases and cancer. In recent years, natural products have been reported to induce multiple cell death pathways to exhibit antitumor effects. Among them, pyroptosis is a unique programmed cell death (PCD) characterized by continuous cell membrane permeability and intracellular content leakage. According to the canonical and noncanonical pathways, the formation of gasdermin-N pores involves a variety of transcriptional targets and post-translational modifications. Thus, tailored control of PCD may facilitate dying cells with sufficient immunogenicity to activate the immune system to eliminate other tumor cells. Therefore, we summarized the currently reported natural products or their derivatives and their nano-drugs that induce pyroptosis-related signaling pathways. We reviewed six main categories of bioactive compounds extracted from natural products, including flavonoids, terpenoids, polyphenols, quinones, artemisinins, and alkaloids. Correspondingly, the underlying mechanisms of how these compounds and their derivatives engage in pyroptosis are also discussed. Moreover, the synergistic effect of natural bioactive compounds with other antitumor therapies is proposed as a novel therapeutic strategy for traditional chemotherapy, radiotherapy, chemodynamic therapy, photodynamic therapy, photothermal therapy, hyperthermal therapy, and sonodynamic therapy. Consequently, we provide insights into natural products to develop a novel antitumor therapy or qualified adjuvant agents by inducing pyroptosis, which may eventually be applied clinically.
Collapse
Affiliation(s)
- Yingfei Wen
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - You Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Bin-Bin Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Peng Liu
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Miaojuan Qiu
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Zihang Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Jiaqi Xu
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Bo Bi
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Shiqiang Zhang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Xinyi Deng
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Kaiyuan Liu
- Department of Bone Tumor Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Shangbo Zhou
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Qiang Wang
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Jing Zhao
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
5
|
Wang X, Zhang H, XinZhang, Liu Y. Abscopal effect: from a rare phenomenon to a new frontier in cancer therapy. Biomark Res 2024; 12:98. [PMID: 39228005 PMCID: PMC11373306 DOI: 10.1186/s40364-024-00628-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/30/2024] [Indexed: 09/05/2024] Open
Abstract
Radiotherapy (RT) controls local lesions, meantime it has the capability to induce systemic response to inhibit distant, metastatic, non-radiated tumors, which is referred to as the "abscopal effect". It is widely recognized that radiotherapy can stimulate systemic immune response. This provides a compelling theoretical basis for the combination of immune therapy combined with radiotherapy(iRT). Indeed, this phenomenon has also been observed in clinical treatment, bringing significant clinical benefits to patients, and a series of basic studies are underway to amplify this effect. However, the molecular mechanisms of immune response induced by RT, determination of the optimal treatment regimen for iRT, and how to amplify the abscopal effect. In order to amplify and utilize this effect in clinical management, these key issues require to be well addressed; In this review, we comprehensively summarize the growing consensus and emphasize the emerging limitations of enhancing the abscopal effect with radiotherapy or immunotherapy. Finally, we discuss the prospects and barriers to the current clinical translational applications.
Collapse
Affiliation(s)
- Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China
| | - Haoyu Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China
| | - XinZhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China.
| | - Yong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China.
| |
Collapse
|
6
|
Xu H, Liu Z, Du M, Chen Z. Progression in low-intensity ultrasound-induced tumor radiosensitization. Cancer Med 2024; 13:e7332. [PMID: 38967145 PMCID: PMC11224918 DOI: 10.1002/cam4.7332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Radiotherapy (RT) is a widely utilized tumor treatment approach, while a significant obstacle in this treatment modality is the radioresistance exhibited by tumor cells. To enhance the effectiveness of RT, scientists have explored radiosensitization approaches, including the use of radiosensitizers and physical stimuli. Nevertheless, several approaches have exhibited disappointing results including adverse effects and limited efficacy. A safer and more effective method of radiosensitization involves low-intensity ultrasound (LIUS), which selectively targets tumor tissue and enhances the efficacy of radiation therapy. METHODS This review summarized the tumor radioresistance reasons and explored LIUS potential radiosensitization mechanisms. Moreover, it covered diverse LIUS application strategies in radiosensitization, including the use of LIUS alone, ultrasound-targeted intravascular microbubble destruction, ultrasound-mediated targeted radiosensitizers delivery, and sonodynamic therapy. Lastly, the review presented the limitations and prospects of employing LIUS-RT combined therapy in clinical settings, emphasizing the need to connect research findings with practical applications. RESULTS AND CONCLUSION LIUS employs cost-effective equipment to foster tumor radiosensitization, curtail radiation exposure, and elevate the quality of life for patients. This efficacy is attributed to LIUS's ability to utilize thermal, cavitation, and mechanical effects to overcome tumor cell resistance to RT. Multiple experimental analyses have underscored the effectiveness of LIUS in inducing tumor radiosensitization using diverse strategies. While initial studies have shown promising results, conducting more comprehensive clinical trials is crucial to confirm its safety and effectiveness in real-world situations.
Collapse
Affiliation(s)
- Haonan Xu
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, The Affiliated Changsha Central Hospital, Hengyang Medical SchoolUniversity of South ChinaChangshaHunan ProvinceChina
- Institute of Medical Imaging, Hengyang Medical School, University of South ChinaHengyangHunan ProvinceChina
| | - Zichao Liu
- Institute of Medical Imaging, Hengyang Medical School, University of South ChinaHengyangHunan ProvinceChina
- The Seventh Affiliated Hospital, Hunan Veterans Administration Hospital, Hengyang Medical SchoolUniversity of South ChinaChangshaHunan ProvinceChina
| | - Meng Du
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, The Affiliated Changsha Central Hospital, Hengyang Medical SchoolUniversity of South ChinaChangshaHunan ProvinceChina
- Institute of Medical Imaging, Hengyang Medical School, University of South ChinaHengyangHunan ProvinceChina
| | - Zhiyi Chen
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, The Affiliated Changsha Central Hospital, Hengyang Medical SchoolUniversity of South ChinaChangshaHunan ProvinceChina
- Institute of Medical Imaging, Hengyang Medical School, University of South ChinaHengyangHunan ProvinceChina
| |
Collapse
|
7
|
Wang Z, Ren X, Li Y, Qiu L, Wang D, Liu A, Liang H, Li L, Yang B, Whittaker AK, Liu Z, Jin S, Lin Q, Wang T. Reactive Oxygen Species Amplifier for Apoptosis-Ferroptosis Mediated High-Efficiency Radiosensitization of Tumors. ACS NANO 2024; 18:10288-10301. [PMID: 38556985 DOI: 10.1021/acsnano.4c01625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Insufficient reactive oxygen species (ROS) production and radioresistance have consistently contributed to the failure of radiotherapy (RT). The development of a biomaterial capable of activating ROS-induced apoptosis and ferroptosis is a potential strategy to enhance RT sensitivity. To achieve precision and high-efficiency RT, the theranostic nanoplatform Au/Cu nanodots (Au/CuNDs) were designed for dual-mode imaging, amplifying ROS generation, and inducing apoptosis-ferroptosis to sensitize RT. A large amount of ROS is derived from three aspects: (1) When exposed to ionizing radiation, Au/CuNDs effectively absorb photons and emit various electrons, which can interact with water to produce ROS. (2) Au/CuNDs act as a catalase-like to produce abundant ROS through Fenton reaction with hydrogen peroxide overexpressed of tumor cells. (3) Au/CuNDs deplete overexpressed glutathione, which causes the accumulation of ROS. Large amounts of ROS and ionizing radiation further lead to apoptosis by increasing DNA damage, and ferroptosis by enhancing lipid peroxidation, significantly improving the therapeutic efficiency of RT. Furthermore, Au/CuNDs serve as an excellent nanoprobe for high-resolution near-infrared fluorescence imaging and computed tomography of tumors. The promising dual-mode imaging performance shows their potential application in clinical cancer detection and imaging-guided precision RT, minimizing damage to adjacent normal tissues during RT. In summary, our developed theranostic nanoplatform integrates dual-mode imaging and sensitizes RT via ROS-activated apoptosis-ferroptosis, offering a promising prospect for clinical cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Ze Wang
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun 130041, P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xiaojun Ren
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun 130041, P. R. China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, P. R. China
| | - Yunfeng Li
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Ling Qiu
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Dongzhou Wang
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun 130041, P. R. China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, P. R. China
| | - Annan Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Hao Liang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Lei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Zhongshan Liu
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Shunzi Jin
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, P. R. China
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Tiejun Wang
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| |
Collapse
|
8
|
Sun X, Wu L, Du L, Xu W, Han M. Targeting the organelle for radiosensitization in cancer radiotherapy. Asian J Pharm Sci 2024; 19:100903. [PMID: 38590796 PMCID: PMC10999375 DOI: 10.1016/j.ajps.2024.100903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/29/2023] [Accepted: 01/16/2024] [Indexed: 04/10/2024] Open
Abstract
Radiotherapy is a well-established cytotoxic therapy for local solid cancers, utilizing high-energy ionizing radiation to destroy cancer cells. However, this method has several limitations, including low radiation energy deposition, severe damage to surrounding normal cells, and high tumor resistance to radiation. Among various radiotherapy methods, boron neutron capture therapy (BNCT) has emerged as a principal approach to improve the therapeutic ratio of malignancies and reduce lethality to surrounding normal tissue, but it remains deficient in terms of insufficient boron accumulation as well as short retention time, which limits the curative effect. Recently, a series of radiosensitizers that can selectively accumulate in specific organelles of cancer cells have been developed to precisely target radiotherapy, thereby reducing side effects of normal tissue damage, overcoming radioresistance, and improving radiosensitivity. In this review, we mainly focus on the field of nanomedicine-based cancer radiotherapy and discuss the organelle-targeted radiosensitizers, specifically including nucleus, mitochondria, endoplasmic reticulum and lysosomes. Furthermore, the organelle-targeted boron carriers used in BNCT are particularly presented. Through demonstrating recent developments in organelle-targeted radiosensitization, we hope to provide insight into the design of organelle-targeted radiosensitizers for clinical cancer treatment.
Collapse
Affiliation(s)
- Xiaoyan Sun
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Linjie Wu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Lina Du
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Wenhong Xu
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Afliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Min Han
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Afliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
9
|
Yeshchenko O, Kutsevol N, Virych P, Khort P, Virych P, Chumachenko V, Cekhun V. Anti-cancer activity of zinc-tetraphenylporphyrin photosensitizer/dextran- graft-polyacrylamide copolymer/Au(Ag) nanoparticle nanohybrids. RSC Adv 2024; 14:5045-5054. [PMID: 38332792 PMCID: PMC10848675 DOI: 10.1039/d3ra07825f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
A comparative study of in vitro anti-cancer photodynamic activities of three-component zinc-tetraphenylporphyrin photosensitizer/dextran-graft-polyacrylamide copolymer/Au(Ag) nanoparticle (ZnTPP/D-g-PAA/Au(Ag)NP) nanohybrids on LNCaP prostate cancer cells was carried out under 420 nm light irradiation with low power. A significant cytotoxic effect was revealed for both ZnTPP/D-g-PAA/AgNP and ZnTPP/D-g-PAA/AuNP nanohybrids, where ZnTPP/D-g-PAA/AgNP nanohybrids exhibited considerably higher anticancer activity (82%) compared to ZnTPP/D-g-PAA/AuNP nanohybrids (45%). The higher activity of silver-containing nanohybrids is rationalized based on two factors. The first factor is the resonance of 420 nm light with a absorption Soret peak of the ZnTPP photosensitizer and a localized surface plasmon mode in Ag nanoparticles. Correspondingly, the plasmon enhancement of reactive oxygen species photogeneration by ZnTPP molecules was considerably higher for the nanohybrid containing silver compared to the one containing gold. The second factor is the higher cytotoxicity of Ag nanoparticles compared to Au ones. The study results prove the high potential of D-g-PAA/Ag(Au)NP nanohybrids combined with 420 nm light irradiation with low power in the photodynamic treatment of prostate cancer.
Collapse
Affiliation(s)
- Oleg Yeshchenko
- Faculty of Physics, Taras Shevchenko National University of Kyiv 60 Volodymyrska Str. 01601 Kyiv Ukraine
| | - Nataliya Kutsevol
- Faculty of Chemistry, Taras Shevchenko National University of Kyiv 60 Volodymyrska Str. 01601 Kyiv Ukraine
| | - Pavlo Virych
- Faculty of Chemistry, Taras Shevchenko National University of Kyiv 60 Volodymyrska Str. 01601 Kyiv Ukraine
| | - Pavlo Khort
- Faculty of Physics, Taras Shevchenko National University of Kyiv 60 Volodymyrska Str. 01601 Kyiv Ukraine
| | - Petro Virych
- R.E. Kavetsky Institute for Experimental Pathology, Oncology and Radiobiology 45 Vasylkivska Str. 03022 Kyiv Ukraine
| | - Vasyl Chumachenko
- Faculty of Chemistry, Taras Shevchenko National University of Kyiv 60 Volodymyrska Str. 01601 Kyiv Ukraine
| | - Vasyl Cekhun
- R.E. Kavetsky Institute for Experimental Pathology, Oncology and Radiobiology 45 Vasylkivska Str. 03022 Kyiv Ukraine
| |
Collapse
|
10
|
Wang Z, Wang D, Ren X, Liu Z, Liu A, Li X, Guan L, Shen Y, Jin S, Zvyagin AV, Yang B, Wang T, Lin Q. One Stone, Three Birds: Multifunctional Nanodots as "Pilot Light" for Guiding Surgery, Enhanced Radiotherapy, and Brachytherapy of Tumors. ACS CENTRAL SCIENCE 2023; 9:1976-1988. [PMID: 37901175 PMCID: PMC10604975 DOI: 10.1021/acscentsci.3c00994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Indexed: 10/31/2023]
Abstract
Surgery, radiotherapy (RT), and brachytherapy are crucial treatments for localized deep tumors. However, imprecise tumor location often leads to issues such as positive surgical margins, extended radiotherapy target volumes, and radiation damage to healthy tissues. Reducing side effects in healthy tissue and enhancing RT efficacy are critical challenges. To address these issues, we developed a multifunctional theranostic platform using Au/Ag nanodots (Au/AgNDs) that act as a "pilot light" for real-time guided surgery, high-efficiency RT, and brachytherapy, achieving a strategy of killing three birds with one stone. First, dual-mode imaging of Au/AgNDs enabled precision RT, minimizing damage to adjacent normal tissue during X-ray irradiation. Au/AgNDs enhanced ionizing radiation energy deposition, increased intracellular reactive oxygen species (ROS) generation, regulated the cell cycle, promoted DNA damage formation, and inhibited DNA repair in tumor cells, significantly improving RT efficacy. Second, in brachytherapy, precise guidance provided by dual-mode imaging addressed challenges related to non-visualization of existing interstitial brachytherapy and multiple adjustments of insertion needle positions. Meanwhile, the effect of brachytherapy was improved. Third, the excellent fluorescence imaging of Au/AgNDs accurately distinguished tumors from normal tissue, facilitating their use as a powerful tool for assisting surgeons during tumor resection. Taken together, our multifunctional theranostic platform offers real-time guidance for surgery and high-efficiency RT, and improves brachytherapy precision, providing a novel strategy and vision for the clinical diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Ze Wang
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Dongzhou Wang
- Department
of Radiation Oncology, The Second Affiliated
Hospital of Jilin University, Changchun 130041, P. R. China
- NHC
Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, P. R. China
| | - Xiaojun Ren
- Department
of Radiation Oncology, The Second Affiliated
Hospital of Jilin University, Changchun 130041, P. R. China
- NHC
Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, P. R. China
| | - Zhongshan Liu
- Department
of Radiation Oncology, The Second Affiliated
Hospital of Jilin University, Changchun 130041, P. R. China
- NHC
Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, P. R. China
| | - Annan Liu
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xingchen Li
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Lin Guan
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yannan Shen
- NHC
Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, P. R. China
| | - Shunzi Jin
- NHC
Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, P. R. China
| | - Andrei V. Zvyagin
- Australian
Research Council Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW 2109, Australia
- Institute
of Biology and Biomedicine, Lobachevsky
Nizhny Novgorod State University, 603105 Nizhny Novgorod, Russia
| | - Bai Yang
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Tiejun Wang
- Department
of Radiation Oncology, The Second Affiliated
Hospital of Jilin University, Changchun 130041, P. R. China
- NHC
Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, P. R. China
| | - Quan Lin
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
11
|
Li L, Wang Z, Guo H, Lin Q. Nanomaterials: a promising multimodal theranostics platform for thyroid cancer. J Mater Chem B 2023; 11:7544-7566. [PMID: 37439780 DOI: 10.1039/d3tb01175e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Thyroid cancer is the most prevalent malignant neoplasm of the cervical region and endocrine system, characterized by a discernible upward trend in incidence over recent years. Ultrasound-guided fine needle aspiration is the current standard for preoperative diagnosis of thyroid cancer, albeit with limitations and a certain degree of false-negative outcomes. Although differentiated thyroid carcinoma generally exhibits a favorable prognosis, dedifferentiation is associated with an unfavorable clinical course. Anaplastic thyroid cancer, characterized by high malignancy and aggressiveness, remains an unmet clinical need with no effective treatments available. The emergence of nanomedicine has opened new avenues for cancer theranostics. The unique features of nanomaterials, including multifunctionality, modifiability, and various detection modes, enable non-invasive and convenient thyroid cancer diagnosis through multimodal imaging. For thyroid cancer treatment, nanomaterial-based photothermal therapy or photodynamic therapy, combined with chemotherapy, radiotherapy, or gene therapy, holds promise in reducing invasiveness and prolonging patient survival or alleviating pain in individuals with anaplastic thyroid carcinoma. Furthermore, nanomaterials enable simultaneous diagnosis and treatment of thyroid cancer. This review aims to provide a comprehensive survey of the latest developments in nanomaterials for thyroid cancer diagnosis and treatment and encourage further research in developing innovative and effective theranostic approaches for thyroid cancer.
Collapse
Affiliation(s)
- Lei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
- Department of Endocrinology, Lequn Branch, The First Hospital of Jilin University, Changchun, 130031, China.
| | - Ze Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Hui Guo
- Department of Endocrinology, Lequn Branch, The First Hospital of Jilin University, Changchun, 130031, China.
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| |
Collapse
|
12
|
Wang Z, Xing H, Liu A, Guan L, Li X, He L, Sun Y, Zvyagin AV, Yang B, Lin Q. Multifunctional nano-system for multi-mode targeted imaging and enhanced photothermal therapy of metastatic prostate cancer. Acta Biomater 2023; 166:581-592. [PMID: 37172637 DOI: 10.1016/j.actbio.2023.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Prostate cancer (PCa) routinely employs magnetic resonance (MR) imaging, while metastatic PCa needs more complicated detection methods for precise localization. The inconvenience of using different methods to detect PCa and its metastases in patients and the limitations of single-mode imaging have brought great challenges to clinicians. Meanwhile, clinical treatments for metastatic PCa are still limited. Herein, we report a targeted theranostic platform of Au/Mn nanodots-luteinising hormone releasing hormone (AMNDs-LHRH) nano-system for multi-mode imaging guided photothermal therapy of PCa. The nano-system not only can simultaneously target Gonadotropin-Releasing Hormone Receptor (GnRH-R) positive PCa and its metastases for accurate preoperative CT/MR diagnosis, but also possesses fluorescence (FL) visualization navigated surgery, demonstrating its potential application in clinical cancer detection and surgery guidance. Meanwhile, the AMNDs-LHRH with promising targeting and photothermal conversion ability significantly improve the photothermal therapy effect of metastatic PCa. The AMNDs-LHRH nano-system guarantees the diagnostic accuracy and enhanced therapeutic effect, which provides a promising platform for clinical diagnosis and treatment of metastatic PCa. STATEMENT OF SIGNIFICANCE: Accurate clinical diagnosis and treatment of prostate cancer and its metastases is challenging. A targeted theranostic platform of AMNDs-LHRH nano-system for multi-mode imaging (FL/CT/MR) guided photothermal therapy of metastatic prostate cancer has been reported. The nano-system not only can simultaneously target prostate cancer and its metastases for accurate preoperative CT/MR diagnosis, but also possesses fluorescence visualization navigated surgery, demonstrating its potential application in clinical cancer detection and surgery guidance. The nano-system with great targeting and photothermal conversion ability significantly improve the photothermal therapy effect of metastatic prostate cancer. Overall, the AMNDs-LHRH nano-system integrates tumor targeting, multi-mode imaging and enhanced therapeutic effect, which can provide an effective strategy for the clinical diagnosis and treatment of metastatic PCa.
Collapse
Affiliation(s)
- Ze Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Huiyuan Xing
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Annan Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Lin Guan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xingchen Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Liang He
- Department of Urology, the First Hospital of Jilin University, Changchun 130021, Jilin, China.
| | - Yuanqing Sun
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
| | - Andrei V Zvyagin
- Australian Research Council Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW 2109, Australia and Institute of Biology and Biomedicine, Lobachevsky Nizhny Novgorod State University, 603105. Nizhny Novgorod, Russia
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
13
|
Wang Z, Ou X, Guan L, Li X, Liu A, Li L, Zvyagin AV, Qu W, Yang B, Lin Q. Pomegranate-inspired multifunctional nanocomposite wound dressing for intelligent self-monitoring and promoting diabetic wound healing. Biosens Bioelectron 2023; 235:115386. [PMID: 37187060 DOI: 10.1016/j.bios.2023.115386] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/24/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023]
Abstract
Diabetic wounds are chronically hard-healing wounds. Bacterial infection, persistent inflammation and impaired angiogenesis are key factors affecting diabetic wound healing. Herein, inspired by pomegranate, Au/Ag nanodots (Au/AgNDs) with fluorescent and photothermal properties were adopted as the pomegranate-like core, and the polyvinyl alcohol hydrogel as the pomegranate-like shell to obtain the multifunctional nanocomposite wound dressing for promoting diabetic wounds healing and real-time self-monitoring the dressing state. On the one hand, the antibacterial and photothermal therapy synergistic strategy based on the nanocomposite has an excellent treatment effect on diabetic wounds by highly antibacterial, anti-inflammation, accelerating collagen deposition and angiogenesis. On the other hand, the nanocomposite can be used as "smart messenger" to determine the appropriate time for dressing replacement. With the release of Au/AgNDs from the nanocomposite, the photothermal performance and antibacterial activity of the wound dressing were reduced, and the fluorescence intensity decreased. The change of fluorescence intensity can be visualized by the naked eye, which guides the appropriate time for dressing replacement, and avoids secondary wound damage caused by frequent and blind dressing replacement. This work provides an effective strategy for the treatment of diabetic wounds and intelligent self-monitoring of the state of dressings in clinical practice.
Collapse
Affiliation(s)
- Ze Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Xiaolan Ou
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Lin Guan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Xingchen Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Annan Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Lei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Andrei V Zvyagin
- Australian Research Council Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW, 2109, Australia; Australia and Institute of Biology and Biomedicine, Lobachevsky Nizhny Novgorod State University, 603105, Nizhny Novgorod, Russia
| | - Wenrui Qu
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, 130041, PR China.
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|