1
|
Hooe SL, Green CM, Susumu K, Stewart MH, Breger JC, Medintz IL. Optimizing the conversion of phosphoenolpyruvate to lactate by enzymatic channeling with mixed nanoparticle display. CELL REPORTS METHODS 2024; 4:100764. [PMID: 38714198 PMCID: PMC11133815 DOI: 10.1016/j.crmeth.2024.100764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/19/2024] [Accepted: 04/12/2024] [Indexed: 05/09/2024]
Abstract
Co-assembling enzymes with nanoparticles (NPs) into nanoclusters allows them to access channeling, a highly efficient form of multienzyme catalysis. Using pyruvate kinase (PykA) and lactate dehydrogenase (LDH) to convert phosphoenolpyruvic acid to lactic acid with semiconductor quantum dots (QDs) confirms how enzyme cluster formation dictates the rate of coupled catalytic flux (kflux) across a series of differentially sized/shaped QDs and 2D nanoplatelets (NPLs). Enzyme kinetics and coupled flux were used to demonstrate that by mixing different NP systems into clusters, a >10× improvement in kflux is observed relative to free enzymes, which is also ≥2× greater than enhancement on individual NPs. Cluster formation was characterized with gel electrophoresis and transmission electron microscopy (TEM) imaging. The generalizability of this mixed-NP approach to improving flux is confirmed by application to a seven-enzyme system. This represents a powerful approach for accessing channeling with almost any choice of enzymes constituting a multienzyme cascade.
Collapse
Affiliation(s)
- Shelby L Hooe
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Christopher M Green
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Kimihiro Susumu
- Optical Sciences Division Code 5611, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Michael H Stewart
- Optical Sciences Division Code 5611, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Joyce C Breger
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA.
| |
Collapse
|
2
|
Hooe SL, Smith AD, Dean SN, Breger JC, Ellis GA, Medintz IL. Multienzymatic Cascades and Nanomaterial Scaffolding-A Potential Way Forward for the Efficient Biosynthesis of Novel Chemical Products. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309963. [PMID: 37944537 DOI: 10.1002/adma.202309963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/25/2023] [Indexed: 11/12/2023]
Abstract
Synthetic biology is touted as the next industrial revolution as it promises access to greener biocatalytic syntheses to replace many industrial organic chemistries. Here, it is shown to what synthetic biology can offer in the form of multienzyme cascades for the synthesis of the most basic of new materials-chemicals, including especially designer chemical products and their analogs. Since achieving this is predicated on dramatically expanding the chemical space that enzymes access, such chemistry will probably be undertaken in cell-free or minimalist formats to overcome the inherent toxicity of non-natural substrates to living cells. Laying out relevant aspects that need to be considered in the design of multi-enzymatic cascades for these purposes is begun. Representative multienzymatic cascades are critically reviewed, which have been specifically developed for the synthesis of compounds that have either been made only by traditional organic synthesis along with those cascades utilized for novel compound syntheses. Lastly, an overview of strategies that look toward exploiting bio/nanomaterials for accessing channeling and other nanoscale materials phenomena in vitro to direct novel enzymatic biosynthesis and improve catalytic efficiency is provided. Finally, a perspective on what is needed for this field to develop in the short and long term is presented.
Collapse
Affiliation(s)
- Shelby L Hooe
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
- National Research Council, Washington, DC, 20001, USA
| | - Aaron D Smith
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Scott N Dean
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Joyce C Breger
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Gregory A Ellis
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| |
Collapse
|
3
|
Hooe S, Thakur M, Lasarte-Aragonés G, Breger JC, Walper SA, Medintz IL, Ellis GA. Exploration of the In Vitro Violacein Synthetic Pathway with Substrate Analogues. ACS OMEGA 2024; 9:3894-3904. [PMID: 38284012 PMCID: PMC10809250 DOI: 10.1021/acsomega.3c08233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024]
Abstract
Evolution has gifted enzymes with the ability to synthesize an abundance of small molecules with incredible control over efficiency and selectivity. Central to an enzyme's role is the ability to selectively catalyze reactions in the milieu of chemicals within a cell. However, for chemists it is often desirable to extend the substrate scope of reactions to produce analogue(s) of a desired product and therefore some degree of enzyme promiscuity is often desired. Herein, we examine this dichotomy in the context of the violacein biosynthetic pathway. Importantly, we chose to interrogate this pathway with tryptophan analogues in vitro, to mitigate possible interference from cellular components and endogenous tryptophan. A total of nine tryptophan analogues were screened for by analyzing the substrate promiscuity of the initial enzyme, VioA, and compared to the substrate tryptophan. These results suggested that for VioA, substitutions at either the 2- or 4-position of tryptophan were not viable. The seven analogues that showed successful substrate conversion by VioA were then applied to the five enzyme cascade (VioABEDC) for the production of violacein, where l-tryptophan and 6-fluoro-l-tryptophan were the only substrates which were successfully converted to the corresponding violacein derivative(s). However, many of the other tryptophan analogues did convert to various substituted intermediaries. Overall, our results show substrate promiscuity with the initial enzyme, VioA, but much less for the full pathway. This work demonstrates the complexity involved when attempting to analyze substrate analogues within multienzymatic cascades, where each enzyme involved within the cascade possesses its own inherent promiscuity, which must be compatible with the remaining enzymes in the cascade for successful formation of a desired product.
Collapse
Affiliation(s)
- Shelby
L. Hooe
- National
Research Council, Washington, D.C. 20001, United States
- Center
for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Meghna Thakur
- Center
for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College
of Science, George Mason University, Fairfax, Virginia 22030, United States
| | - Guillermo Lasarte-Aragonés
- Center
for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College
of Science, George Mason University, Fairfax, Virginia 22030, United States
| | - Joyce C. Breger
- Center
for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Scott A. Walper
- Center
for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Igor L. Medintz
- Center
for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Gregory A. Ellis
- Center
for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
4
|
Seo K, Hagino K, Ichihashi N. Progresses in Cell-Free In Vitro Evolution. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 186:121-140. [PMID: 37306699 DOI: 10.1007/10_2023_219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biopolymers, such as proteins and RNA, are integral components of living organisms and have evolved through a process of repeated mutation and selection. The technique of "cell-free in vitro evolution" is a powerful experimental approach for developing biopolymers with desired functions and structural properties. Since Spiegelman's pioneering work over 50 years ago, biopolymers with a wide range of functions have been developed using in vitro evolution in cell-free systems. The use of cell-free systems offers several advantages, including the ability to synthesize a wider range of proteins without the limitations imposed by cytotoxicity, and the capacity for higher throughput and larger library sizes than cell-based evolutionary experiments. In this chapter, we provide a comprehensive overview of the progress made in the field of cell-free in vitro evolution by categorizing evolution into directed and undirected. The biopolymers produced by these methods are valuable assets in medicine and industry, and as a means of exploring the potential of biopolymers.
Collapse
Affiliation(s)
- Kaito Seo
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo, Tokyo, Japan
| | - Katsumi Hagino
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo, Tokyo, Japan
| | - Norikazu Ichihashi
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo, Tokyo, Japan.
- Komaba Institute for Science, The University of Tokyo, Tokyo, Japan.
- Universal Biology Institute, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|