1
|
Zhao J, Wei W, Chen M, Chen Y, An D. Syntheses, structures and characterization of noncentrosymmetric MZnPO 4 (M = K, NH 4). Dalton Trans 2024. [PMID: 39506535 DOI: 10.1039/d4dt02530j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Two phosphates, KZnPO4 and NH4ZnPO4, were successfully synthesized using a solid-state reaction method and characterized via single-crystal X-ray diffraction. Both of their structures feature a three-way skeleton composed of isolated PO4 and ZnO4 tetrahedra, with K+/NH4+ cations occupying the spaces within the frameworks to balance charges. These compounds are isostructural and crystallize in the noncentrosymmetric P63 space group. Their structures were compared, revealing that non-centrosymmetric (NCS) KZnPO4 and NH4ZnPO4 exhibit second harmonic generation (SHG) responses of 0.4 × KDP and 1 × KDP, respectively. Furthermore, by combining the electronic structure and SHG density calculations, we examined the effects of ZnO4 tetrahedra on the SHG response of KZnPO4 and NH4ZnPO4.
Collapse
Affiliation(s)
| | - Wei Wei
- Changji University, Changji 831100, China.
| | | | - Yanna Chen
- Changji University, Changji 831100, China.
| | - Donghai An
- Changji University, Changji 831100, China.
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China
| |
Collapse
|
2
|
Yang M, Yu H, Hu Z, Wang J, Wu Y, Wu H. Ba 2ScBSi 2O 9: A Mixed-Coordination Borosilicate with a Low B/Si Ratio Exhibiting Enhanced Second Harmonic Generation Response. Inorg Chem 2024; 63:16507-16514. [PMID: 39165176 DOI: 10.1021/acs.inorgchem.4c02798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Rational chemical substitution is an effective way to regulate structure and enrich property. Herein, a new noncentrosymmetric borosilicate, Ba2ScBSi2O9, was successfully synthesized by substituting CaO6 units in Ba2CaB2Si4O14 with ScO6 octahedra, with comparatively strong covalency. This substitution not only effectively prevents polymerization of the B-O groups, resulting in an intriguing structural transformation from tetrahedral-coordinated borosilicate of Ba2CaB2Si4O14 to mixed-coordinated borosilicate Ba2ScBSi2O9, but also enhances its second harmonic generation response (2 × KDP), that is nearly four times higher than its parent structure while keeping a short ultraviolet (UV) cutoff edge (λcutoff < 190 nm). In addition, the polar space group of Pca21 for Ba2ScBSi2O9 achieves its ferroelectric polarization reversal capability, which makes quasi-phase-matching technology possible to counteract the nonphase-matching caused by small birefringence of silicates. This work indicates the unique role of heterovalent substitution in regulating structure and performance, providing new insights for exploring borosilicate with versatile functionality.
Collapse
Affiliation(s)
- Ming Yang
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Hongwei Yu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Zhanggui Hu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Jiyang Wang
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Yicheng Wu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Hongping Wu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
3
|
Zhang HL, Jiao DX, Li XF, He C, Dong XM, Huang K, Li JH, An XT, Wei Q, Wang GM. A Noncentrosymmetric Metal-Free Borophosphate: Achieving a Large Birefringence and Excellent Stability by Covalent-Linkage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401464. [PMID: 38616766 DOI: 10.1002/smll.202401464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/25/2024] [Indexed: 04/16/2024]
Abstract
Organic-inorganic hybrid linear and nonlinear optical (NLO) materials have received increasingly wide spread attention in recent years. Herein, the first hybrid noncentrosymmetric (NCS) borophosphate, (C5H6N)2B2O(HPO4)2 (4PBP), is rationally designed and synthesized by a covalent-linkage strategy. 4-pyridyl-boronic acid (4 PB) is considered as a bifunctional unit, which may effectively improve the optical properties and stability of the resultant material. On the one hand, 4 PB units are covalently linked with PO3(OH) groups via strong B-O-P connections, which significantly enhances the thermal stability of 4PBP (decomposition at 321, vs lower 200 °C of most of hybrid materials). On the other hand, the planar π-conjugated C5H6N units and their uniform layered arrangements represent large structural anisotropy and hyperpolarizability, achieving the largest birefringence (0.156 @ 546 nm) in the reported borophosphates and a second-harmonic generation response (0.7 × KDP). 4PBP also exhibits a wide transparency range (0.27-1.50 µm). This work not only provides a promising birefringent material, but also offers a practical covalent-attachment strategy for the rational design of new high-performance optical materials.
Collapse
Affiliation(s)
- Hui-Li Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Dong-Xue Jiao
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Xiao-Fei Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Chao He
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang, Hebei, 050018, P. R. China
| | - Xi-Ming Dong
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Kai Huang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Jin-Hua Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Xing-Tao An
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang, Hebei, 050018, P. R. China
| | - Qi Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| |
Collapse
|
4
|
Yu S, Fan J, Hu Z, Wu Y. Li 3Na 7B 4P 6O 26: a new ultraviolet transparent congruently melting non-linear optical crystal. Dalton Trans 2024; 53:12331-12337. [PMID: 38984652 DOI: 10.1039/d4dt01428f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The exploration of nonlinear optical crystals with ultraviolet (UV) transparent ranges and easy-to-grow large-size crystals is one of the current research interests. Herein, by combining borate and phosphate groups, a novel congruently melting alkali-mixed metal borophosphate, Li3Na7B4P6O26 (LNBPO) with UV transparency was successfully designed and synthesized using a high-temperature flux method. LNBPO crystallizes in the non-centrosymmetric (NCS) and polar orthorhombic space group Pca21 (no. 29), showcasing interesting (B2P3O13)∞ chains along the c axis. Notably, LNBPO has a moderate second harmonic generation (SHG) response (∼0.38 × KDP) and displays a wide transmission ranging from 0.22 to 3.68 μm, as measured by a [001]-oriented crystal wafer. Furthermore, a high-quality single crystal of LNBPO with sizes up to 14 × 14 × 12 mm3 was grown using the top-seeded solution growth method. The refractive indices of LNBPO were determined by applying the minimum deviation angle method. These results show that LNBPO possesses a phase-matching wavelength as short as 483 nm, indicating its potential as a new UV NLO crystal.
Collapse
Affiliation(s)
- Sujuan Yu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China.
| | - Jiangtao Fan
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China.
| | - Zhanggui Hu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China.
| | - Yicheng Wu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
5
|
Chen M, Wei W, Zhao J, An D, Chen Y. Discovery of a new bimetallic borate with strong optical anisotropy activated by π-conjugated [B 2O 5] units. Dalton Trans 2024; 53:8898-8904. [PMID: 38747712 DOI: 10.1039/d4dt01130a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Birefringent materials with high optical anisotropy have been identified as a research hotspot owing to their significant scientific and technological significance in modern optoelectronics for manipulating light polarization. Researchers studying borate systems have discovered that adding π-conjugated units placed in parallel can significantly increase the birefringence of crystalline solids; some examples include [BO3] units, [B2O5] units, and [B3O6] units. However, there are not many borates with strictly parallel configurations of π-conjugated [B2O5] units. In this study, a new bimetallic borate Sr2Cd4(B2O5)3 with near-parallel arrangement of π-conjugated [B2O5] units was discovered. Sr2Cd4(B2O5)3 possesses the maximum number density of [B2O5] units, shortest dihedral angle of [B2O5] units (between the two [BO3]), and largest degree of [CdO6] octahedral distortion among all the currently known Sr-Cd-B-O tetragonal system borates, making it demonstrate a large birefringence of 0.102 at 532 nm. Theoretical analysis proves that π-conjugated [B2O5] anions are the primary source of the large birefringence of Sr2Cd4(B2O5)3.
Collapse
Affiliation(s)
| | - Wei Wei
- Changji University, Changji 831100, China.
| | | | - Donghai An
- Changji University, Changji 831100, China.
| | - Yanna Chen
- Changji University, Changji 831100, China.
| |
Collapse
|
6
|
Hao Y, Deng J, Chen C, Lin Y, Li H, Qin G, Hu K. Na 3[Al 2B 6P 4O 22(OH) 3](H 2O) 6 and Na 3[Al 2BP 2O 11](H 2O) 0.5: Two Remarkable Complex Aluminum Borophosphates. Inorg Chem 2024; 63:9098-9108. [PMID: 38718177 DOI: 10.1021/acs.inorgchem.4c00331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Two remarkable aluminum borophosphates (AlBPOs), namely, Na3[Al2B6P4O22(OH)3](H2O)6 (denoted as ABPO1) and Na3[Al2BP2O11](H2O)0.5 (denoted as ABPO2), have been designed and prepared by low-temperature flux syntheses. The exceptional open framework structure of ABPO1 is formed by a unique microanionic network [Al2B6P4O22(OH)3]n3-, which contains three types of 8-, 12-, and 16-membered ring (MR) tunnels. Interestingly, these tunnels are featured by a type of super-nanocage as large as ∼1.753 nm × 1.753 nm × 1.753 nm, which is the first example of AlBPOs containing extra-large cages. Importantly, it was found that Na+ can be partially exchanged by K+, Sr2+, Cd2+, and Ni2+, which means that it is a potential ionic exchanger for removing radionuclides and toxic cations. The structure of ABPO2 features a unique 2D anionic AlBPO layer composed of corner-sharing AlO6 octahedra and AlO4, BO4, and PO4 tetrahedra. To the best of our knowledge, this is the first example of both AlO6 octahedra and AlO4 tetrahedra being contained in the structure. 9-MRs can be observed along the b-axis. Herein, the syntheses and topological structures of ABPO1 and ABPO2 as well as elemental analysis, thermal stability, infrared spectroscopy, UV-vis diffuse reflectance, structural properties, and ionic exchange properties are also discussed.
Collapse
Affiliation(s)
- Yucheng Hao
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei 230000, Anhui, China
| | - Jian Deng
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei 230000, Anhui, China
| | - Changlin Chen
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei 230000, Anhui, China
| | - Yuan Lin
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou 350117, Fujian, China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, Fujian, China
| | - Haijian Li
- National Key Lab of Science and Technology on Combustion and Explosion, Xi'an Modern Chemistry Research Institute, Xi'an 710065, China
| | - Guangchao Qin
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei 230000, Anhui, China
| | - Kunhong Hu
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei 230000, Anhui, China
| |
Collapse
|
7
|
Yang X, Zhang W, Pan X, Hou X, Han S. Hydroxyl-Driven Enhanced Birefringence in Borophosphates. Inorg Chem 2023. [PMID: 37992320 DOI: 10.1021/acs.inorgchem.3c03394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Borophosphates have become promising candidates for ultraviolet or deep-ultraviolet functional crystals. Through high-temperature solution method, four new borophosphates, K2B2P2O9, (NH4)2BP2O7(OH), K2BP2O7(OH), and P21/c-(NH4)2B2P3O11(OH), were acquired successfully. Single crystal X-ray diffraction suggests that K2B2P2O9, (NH4)2BP2O7(OH), and K2BP2O7(OH) belong to the noncentrosymmetric space group, while P21/c-(NH4)2B2P3O11(OH) belongs to the centrosymmetric compound. It is worth mentioning that K2B2P2O9, (NH4)2BP2O7(OH), and K2BP2O7(OH) present the new fundamental building blocks [B2P2O11], [BP2O10H], and [BP2O9(OH)], respectively, as far as we know. Compared with K2B2P2O9, (NH4)2BP2O7(OH), K2BP2O7(OH), and P21/c-(NH4)2B2P3O11(OH) exhibit a larger optical anisotropy, further confirming the positive effect of hydroxyl groups on birefringence. UV-vis-NIR diffuse reflectance spectra display that K2B2P2O9 and (NH4)2BP2O7(OH) have short UV cutoff edges. Meanwhile, theoretical calculations were conducted to comprehend their optical properties and electronic structures.
Collapse
Affiliation(s)
- Xia Yang
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenbin Zhang
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueting Pan
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China
| | - Xueling Hou
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shujuan Han
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Zhou J, Wang L, Wang H, Luo L, Li J, Yu F. Ba 3(BS 3)(PS 4): the first alkaline-earth metal thioborate-thiophosphate with strong optical anisotropy originating from planar [BS 3] units. Dalton Trans 2023; 52:16113-16117. [PMID: 37899722 DOI: 10.1039/d3dt02807k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
The first alkaline-earth metal thioborate-thiophosphate Ba3(BS3)(PS4) was designed from Ba3(BO3)(PO4) by S-O substitution and fabricated experimentally. The [BS3] pseudo-layers formed in the structure contribute to the strong optical anisotropy and a large birefringence of ∼0.11 at 1064 nm. The results enrich the structural and chemical diversity of chalcogenides.
Collapse
Affiliation(s)
- Jiazheng Zhou
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS; Xinjiang Key Laboratory of Electronic Information Materials & Devices, Urumqi 830011, China.
| | - Linan Wang
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS; Xinjiang Key Laboratory of Electronic Information Materials & Devices, Urumqi 830011, China.
| | - Hongshan Wang
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS; Xinjiang Key Laboratory of Electronic Information Materials & Devices, Urumqi 830011, China.
| | - Ling Luo
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS; Xinjiang Key Laboratory of Electronic Information Materials & Devices, Urumqi 830011, China.
| | - Junjie Li
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS; Xinjiang Key Laboratory of Electronic Information Materials & Devices, Urumqi 830011, China.
| | - Feng Yu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.
| |
Collapse
|
9
|
Chen Z, Li F, Yang Z, Pan S, Mutailipu M. Hydroxyfluorooxoborate (NH 4)[C(NH 2) 3][B 3O 3F 4(OH)] for exploring the effects of cation substitution on structure and optical properties. Chem Commun (Camb) 2023; 59:12435-12438. [PMID: 37772847 DOI: 10.1039/d3cc04346k] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Cation substitution is a straightforward but effective technique for improving the structure and properties; however, controlling directed substitution still poses significant difficulties. Herein, a metal-free hydroxyfluorooxoborate (NH4)[C(NH2)3][B3O3F4(OH)] has been synthesized using the strategy of heterologous substitution based on the template of A2[B3O3F4(OH)]. Tunable structure and optical properties have been achieved via varied A-site cation substitution. The intrinsic mechanism for this tunability was established by crystallography and theoretical research.
Collapse
Affiliation(s)
- Ziqi Chen
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Fuming Li
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhihua Yang
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Shilie Pan
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Miriding Mutailipu
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
10
|
Chen Z, Li F, Liu Y, Cui C, Mutailipu M. Heterologous Isomorphic Substitution Induces Optical Property Enhancement for Deep-UV Crystals: a Case in Rb[B 3O 3F 2(OH) 2]. Inorg Chem 2023; 62:14512-14517. [PMID: 37642658 DOI: 10.1021/acs.inorgchem.3c02644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Optical anisotropy is pivotal for optical crystals, and it can be characterized by the maximum algebraic difference in refractive indices. Improving the optical anisotropy, especially for deep-ultraviolet (UV) crystals, is still a challenge and of interest. Herein, a new hydroxyfluorooxoborate, Rb[B3O3F2(OH)2], was obtained by the heterologous isomorphic substitution strategy. Dual enhancement for the band gap and birefringence compared with the parent A[B3O3F2(OH)2] (A = [Ph4P]/[Ph3MeP]) compounds was achieved in Rb[B3O3F2(OH)2]. This considerable enhancement originates from the removal of organic components and the retention of a birefringence-active anionic framework. This enhancement pushes the application region from UV to deep-UV. This discovery not only expands the structural chemistry of borates but also demonstrates the viability of heterologous isomorphic substitution to design deep-UV crystals with enhanced optical property.
Collapse
Affiliation(s)
- Ziqi Chen
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences (CAS), 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuming Li
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences (CAS), 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanli Liu
- College of Materials Science and Engineering, Hunan University, Changsha 410004, China
| | - Chen Cui
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences (CAS), 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miriding Mutailipu
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences (CAS), 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Cheng B, Ma W, Tudi A, Liu C, Long X, Yang Y. Introduction of the [B-O/F] Units Enhances the Band Gap and Birefringence from Na 6Mg 3B 10O 18F 6 to K 3NaB 10O 16F 2. Inorg Chem 2023. [PMID: 37494127 DOI: 10.1021/acs.inorgchem.3c01954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The borate family is the main source of deep-ultraviolet (DUV) birefringent crystals, and it has attracted a lot of attention due to versatile [B-O] basic units. Herein, two new borate-based compounds Na6Mg3B10O18F6 and K3NaB10O16F2 were discovered. Their fundamental building blocks are [B5O11] and [B5O10F] units, respectively. The calculated results showed that the band gap and birefringence of K3NaB10O16F2 (Eg = 6.93 eV, Δn = 0.047 at 1064 nm) are greater than those of Na6Mg3B10O18F6 (Eg = 5.40 eV, Δn = 0.039 at 1064 nm). Furthermore, the effects of [B-O/F] units on band gap and birefringence were analyzed by the charge-transfer model and response electron distribution anisotropy method. The results show that introducing the [B-O/F] units can improve the band gap and birefringence. These findings will boost the exploration of DUV birefringent opticals.
Collapse
Affiliation(s)
- Bingliang Cheng
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry of CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjuan Ma
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry of CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China
| | - Abudukadi Tudi
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry of CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changyou Liu
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry of CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China
| | - Xifa Long
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry of CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun Yang
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry of CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Li X, Chu D, Qiu H, Wu Y, Hou X. LiCs 3AlB 7O 14: achieving enhanced optical anisotropy via [AlO 4] tetrahedron introduction to rearrange the anionic framework. Dalton Trans 2023; 52:3942-3946. [PMID: 36919645 DOI: 10.1039/d3dt00401e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Borate has become a hot topic because of its rich structural chemistry and excellent properties for functional materials fields. The rearrangement of π-conjugated B-O units is key to enhancing the optical anisotropy, but it remains a challenge. Herein, by introducing [AlO4] tetrahedra, a new congruent melting aluminoborate LiCs3AlB7O14 with [B7O14] clusters was discovered. This work confirms that the introduction of [AlO4] tetrahedra can lead to the rearrangement of anionic framework of the borate system and thereby enhance the birefringence of LiCs3AlB7O14. The birefringence is about 4.1 times higher than that of its congener Li4Cs3B7O14 with the same [B7O14] clusters. Similarly, the effects of [AlO4] tetrahedra on the rearrangement of the B-O anionic framework are also demonstrated in other known borates.
Collapse
Affiliation(s)
- Xingqi Li
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments; Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongdong Chu
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments; Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haotian Qiu
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments; Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yabo Wu
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments; Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueling Hou
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments; Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Chen Z, Li F, Han J, Yang Z, Pan S, Mutailipu M. Cs[B 3O 3F 2(OH) 2]: discovery of a hydroxyfluorooxoborate guided by selective organic-inorganic transformation. Chem Commun (Camb) 2023; 59:2114-2117. [PMID: 36723363 DOI: 10.1039/d2cc06924e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Selective transformation between organic and inorganic systems is crucial but still remains a challenge. Herein, we demonstrated that selective organic-inorganic transformation is a simple but effective strategy to find new hydroxyfluorooxoborates. By replacing the [Ph4P]/[Ph3MeP] organic cations with Cs atoms, a new hydroxyfluorooxoborate Cs[B3O3F2(OH)2] with three-membered [B3O3F2(OH)2] clusters was synthesized. Theoretical analysis confirmed the effects of different components in the lattice of reported structure on the optical properties.
Collapse
Affiliation(s)
- Ziqi Chen
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi, People's Republic of China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Fuming Li
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi, People's Republic of China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jian Han
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi, People's Republic of China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhihua Yang
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi, People's Republic of China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Shilie Pan
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi, People's Republic of China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Miriding Mutailipu
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi, People's Republic of China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
14
|
Liu W, Lee MH, Guo R, Yao J. Structure and Characterization of K 2Na 3B 2P 3O 13, a New Nonlinear Optical Borophosphate with One-Dimensional Chain Structure and Short Ultraviolet Cutoff Edge. Inorg Chem 2023; 62:2480-2488. [PMID: 36697214 DOI: 10.1021/acs.inorgchem.2c04499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Nonlinear optical (NLO) crystals, being the primary medium for laser wavelength conversion, are crucial in all-solid-state lasers. Borophosphates offer more structural varieties than pure borates and phosphates, and they have become popular as NLO crystal candidates. Through spontaneous crystallization, we acquired a noncentrosymmetric alkali metal borophosphate crystal material, K2Na3B2P3O13 (KNBPO). KNBPO crystallizes in the orthorhombic Cmc21 space group with the following unit cell parameters: a = 13.9238(18) Å, b = 6.7673(8) Å, c = 12.1298(15) Å, and Z = 4, and its structure is characterized by a fundamental building unit 1∞ [B2P3O13] chain structure made up of bridging oxygen linkages between BO4 and PO4 tetrahedra. KNBPO has a short ultraviolet (UV) cut-off edge (<186 nm), a congruent melting characteristic, good thermal stability, and a moderate second harmonic generation response roughly 0.42 times that of KH2PO4. Theoretical calculations reveal that the optical properties of the compound mainly originate from BO4 and PO4 units. Due to the short UV cut-off edge, KNBPO can be used as a potential NLO material in the UV and even deep UV regions, and it enhances the structural variety of borophosphates, which has a reference value for scholars investigating similar materials.
Collapse
Affiliation(s)
- Wenhao Liu
- Beijing Center for Crystal Research and Development, Key Lab of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ming-Hsien Lee
- Department of Physics, Tamkang University, Tamsui, New Taipei 25137, Taiwan
| | - Ruixin Guo
- Beijing Center for Crystal Research and Development, Key Lab of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jiyong Yao
- Beijing Center for Crystal Research and Development, Key Lab of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
15
|
Zhang B, Chen Z. Recent Advances of Inorganic Phosphates with UV/DUV Cutoff Edge and Large Second Harmonic Response. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY 2023. [DOI: 10.1016/j.cjsc.2023.100033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
16
|
Wang F, Wu M, Yang Z, Long X, Yang Y, Pan S. Rational Design of the First Ammonium Magnesium Borate with Deep-Ultraviolet Cutoff Edge and Moderate Birefringence and Further Investigation into the Nature of Ammonium in the Borate System. Inorg Chem 2023; 62:1697-1707. [PMID: 36651178 DOI: 10.1021/acs.inorgchem.2c04129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Through the rational design of the experimental method, the first combination of ammonium and magnesium in the borate system was successfully achieved. In this paper, a case of ammonium magnesium borate, (NH4)2{Mg(H2O)2[B6O7(OH)6]2}·2H2O, was successfully synthesized by a mild hydrothermal method at a relatively low temperature. A brief review was performed to show the participation of NH4+ in the recent development of optical materials. By discussing the optimum synthesis method of ammonium-containing borates and the main factors affecting the dimensionality of B-O anionic groups in their structures, the design strategy for synthesizing ammonium-containing borate and adjusting its structure has been put forward. Relevant experimental measurement results and the first-principles calculation results show that the title compound has a deep-UV cutoff edge (<200 nm) and moderate birefringence (Δncal. = 0.064 @546 nm), which indicates its potential application in the deep-UV region.
Collapse
Affiliation(s)
- Feixiang Wang
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, China
| | - Mengfan Wu
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, China
| | - Zhihua Yang
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, China
| | - Xifa Long
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, China
| | - Yun Yang
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, China
| | - Shilie Pan
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
17
|
Guo J, Tudi A, Lu X, Han S. Noncentrosymmetric versus Centrosymmetric: Halogen Induced Variable Coordination Modes of Sn 2+ and Structural Transition in Sn 3B 3O 7X (X = Cl and Br). Inorg Chem 2023; 62:679-684. [PMID: 36583543 DOI: 10.1021/acs.inorgchem.2c04255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Two new borate halides, Sn3B3O7X (X = Cl and Br), were successfully synthesized via introducing Sn2+ with lone-pair and halogen into borate. Interestingly, halogen-induced variable coordination modes of Sn2+ and anion frameworks make them crystallize in different space groups, from noncentrosymmetric (Pna21) to centrosymmetric (Pbca). Sn3B3O7Cl possesses an SHG response of about 0.5 times that of KDP, while Sn3B3O7Br exhibits a large birefringence (0.123@1064 nm). The theoretical calculations were performed to elucidate the structure-property relationships.
Collapse
Affiliation(s)
- Jingyu Guo
- Research Center for Crystal Materials, Chinese Academy of Sciences Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Abudukadi Tudi
- Research Center for Crystal Materials, Chinese Academy of Sciences Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoquan Lu
- China Testing and Certification International Group Co., Ltd, Beijing 100024, China
| | - Shujuan Han
- Research Center for Crystal Materials, Chinese Academy of Sciences Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Fan J, Wu M, Cheng B, Han J. BaB 2P 2O 8F 2: A Fluoroborophosphate with [B 2P 2O 8F 2] ∞ Layers and Deep-Ultraviolet Cutoff Edge. Inorg Chem 2023; 62:664-669. [PMID: 36598794 DOI: 10.1021/acs.inorgchem.2c03915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A fluoroborophosphate, BaB2P2O8F2, was successfully obtained. Its structure contains a novel [B2P2O8F2]∞ layer containing six-membered rings, which is formed by the fundamental building block composed of three types of non-π-conjugated groups, [PO4], [BO4], and [BO2F2]. BaB2P2O8F2 has a deep-ultraviolet (DUV) cutoff edge (λ < 200 nm) and a tiny birefringence (Δn = 0.007 at 532 nm), which originates from the constituent non-π-conjugated groups. The title compound enriches the versatility of the fluoroborophosphates, encouraging further research into DUV materials in fluoroborophosphate systems.
Collapse
Affiliation(s)
- Jinbin Fan
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, China
| | - Mengfan Wu
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, China
| | - Bingliang Cheng
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, China
| | - Jian Han
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
19
|
Wang X, Zhang B, Yang D, Wang Y. CsB 3O 4(OH) 2: a new deep-ultraviolet birefringent crystal with [B 3O 4(OH) 2] anionic group. Dalton Trans 2022; 51:14059-14063. [PMID: 36111778 DOI: 10.1039/d2dt02573f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new cesium hydroxyborate CsB3O4(OH)2, was designed and synthesized by a hydrothermal method. Remarkably, CsB3O4(OH)2 presents novel [B3O4(OH)2]∞ chains formed by [B3O4(OH)2] fundamental building blocks (FBBs). The report of less common [B3O4(OH)2] FBBs and [B3O4(OH)2]∞ chains in CsB3O4(OH)2 enriches the structural diversity of hydroxyborates. In addition, CsB3O4(OH)2 has a wide transparent window in the DUV spectral range and a large birefringence.
Collapse
Affiliation(s)
- Xinyue Wang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.
| | - Bingbing Zhang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.
| | - Daqing Yang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.
| | - Ying Wang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
20
|
Zhang R, Su X, Zhang J, Wen D, Huang Y. Ba 2Zn 2B 6O 13: coplanar [B 2O 5] in unnoted U-shaped [B 6O 13] groups achieving large birefringence. Chem Commun (Camb) 2022; 58:10182-10185. [PMID: 36000291 DOI: 10.1039/d2cc03529d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Currently, π-conjugated [B2O5] moieties are rarely studied for designing deep-UV birefringent crystals. Here, we report a new deep-UV birefringent crystal Ba2Zn2B6O13 with a deep-UV cut-off edge of 190 nm and large birefringence (Δn = 0.085@ 532 nm), indicating that it can be used as the birefringent material in the DUV area. The first-principles calculation analyses suggest that its large birefringence mainly originates from the coplanar [B2O5] dimers in the unnoted U-shaped [B6O13].
Collapse
Affiliation(s)
- Rui Zhang
- Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology, Yili Normal University, Yining, Xinjiang, 835000, China.
| | - Xin Su
- Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology, Yili Normal University, Yining, Xinjiang, 835000, China.
| | - Jie Zhang
- Department of Physics, Changji University, Changji, Xinjiang, 831100, China
| | - Dulin Wen
- Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology, Yili Normal University, Yining, Xinjiang, 835000, China.
| | - Yineng Huang
- Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology, Yili Normal University, Yining, Xinjiang, 835000, China.
| |
Collapse
|
21
|
Li X, Chu D, Jin W, Yang Z, Pan S, Mutailipu M. Rearrangement of [B 2O 5] Dimers within [B 7O 14] Clusters Enables Enhanced Optical Anisotropy in Li 3Cs 6Al 2B 14O 28F. Inorg Chem 2022; 61:12067-12072. [PMID: 35894746 DOI: 10.1021/acs.inorgchem.2c02347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Borates with tunable structure and property currently provide a new rich source for solid-state chemistry and materials science. Realization of property improvement via simple structural regulation is a rising hot spot of borate-based research. Herein, a new aluminoborate fluoride, Li3Cs6Al2B14O28F, with [B7O14] clusters was discovered, and it was found to melt congruently. The optimally aligned [B2O5] dimers within [B7O14] clusters make Li3Cs6Al2B14O28F an enhanced birefringence, which is about 4.3× higher than its congener compound Li4Cs3B7O14 with same [B7O14] clusters. Structural analysis and additional theoretical calculations have revealed the origin of enhanced optical anisotropy.
Collapse
Affiliation(s)
- Xingqi Li
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongdong Chu
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqi Jin
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihua Yang
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shilie Pan
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miriding Mutailipu
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Zhang W, Huang J, Han S, Yang Z, Pan S. Enhancement of Birefringence in Borophosphate Pushing Phase-Matching into the Short-Wavelength Region. J Am Chem Soc 2022; 144:9083-9090. [PMID: 35561005 DOI: 10.1021/jacs.2c02310] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Borophosphates are very known for the short ultraviolet (UV) cutoff edge and have become the promising UV and deep-UV functional crystals candidates; however, tetrahedral [PO4] and [BO4] groups own weak anisotropy of polarizability and are not conducive to large birefringence, which hinders their application in the short-wavelength region. Improving their birefringence without compromising the band gap is the main research objective. By introducing the excellent birefringent functional groups, such as [B2O5], [BO2]∞ chain, [B2Ox(OH)5-x], and so forth into borophosphates, seven borophosphates with improved birefringence were successfully synthesized (Δn > 0.05@532 nm). Remarkably, among them, the centimeter-sized crystal of Rb3B8PO16 with a short deep-UV cutoff edge (175 nm) and large birefringence (Δn(exp.) ∼ 0.072@589.3 nm) exhibits the shortest phase-matching wavelength (222 nm), which makes Rb3B8PO16 a promising UV NLO crystal, while KB6PO10(OH)4 with deep-UV cutoff edge features the largest birefringence (Δn(exp.) ∼ 0.103@546 nm) in the reported borophosphate system, making KB6PO10(OH)4 a promising deep-UV birefringent crystal. This study not only provides feasible strategies for increasing the birefringence of borophosphates but also pushes phase-matching into the short-wavelength region.
Collapse
Affiliation(s)
- Wenbin Zhang
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junben Huang
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China
| | - Shujuan Han
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihua Yang
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shilie Pan
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
23
|
Qiu H, Li F, Jin C, Lu J, Yang Z, Pan S, Mutailipu M. (N 2H 6)[HPO 3F] 2: maximizing the optical anisotropy of deep-ultraviolet fluorophosphates. Chem Commun (Camb) 2022; 58:5594-5597. [PMID: 35437534 DOI: 10.1039/d2cc01035f] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Although phosphates are a rich source of deep-ultraviolet optical materials, the realization of large optical anisotropy in them still remains a challenge because of the small polarizability anisotropy of [PO4] units. Inspired by the fluoridation strategy and hydrogen bond interaction, a new metal-free monofluorophosphate, (N2H6)[HPO3F]2, was synthesized, which exhibits a large birefringence (cal. 0.077) and wide band gap (∼6.51 eV). Such a large birefringence in (N2H6)[HPO3F]2 sets a new record among available fluorophosphates, and the [HPO3F] unit is theoretically confirmed to be a new birefringence-active unit.
Collapse
Affiliation(s)
- Haotian Qiu
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, and Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuming Li
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, and Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Congcong Jin
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, and Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juanjuan Lu
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, and Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihua Yang
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, and Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shilie Pan
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, and Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miriding Mutailipu
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, and Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
24
|
Wang X, Qi L, Wu L, Zhang R, Abudoureheman M, Lv J, Wang P, Dong X, Jing Q, Chen Z. Synergistic effect of 2[V 2P 2O 14] ∞ layers and hydrogen bonds inducing large birefringence in M(VO) 2(PO 4) 2·4H 2O (M = Ca, Sr, Ba) systems. CrystEngComm 2022. [DOI: 10.1039/d2ce00728b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The parallel alignment of zigzag 2[V2P2O14]∞ layers and the binding force of hydrogen bonds result in the large birefringence of M(VO)2(PO4)2·4H2O (M = Ca, Sr, Ba) compounds.
Collapse
Affiliation(s)
- Xinmei Wang
- Key Laboratory of Oil & Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology & School of Physics and Technology, Xinjiang University, Urumqi 830046, China
| | - Lu Qi
- Key Laboratory of Oil & Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology & School of Physics and Technology, Xinjiang University, Urumqi 830046, China
| | - Lei Wu
- Key Laboratory of Oil & Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology & School of Physics and Technology, Xinjiang University, Urumqi 830046, China
| | - Ruixin Zhang
- Key Laboratory of Oil & Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology & School of Physics and Technology, Xinjiang University, Urumqi 830046, China
| | - Maierhaba Abudoureheman
- Key Laboratory of Oil & Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology & School of Physics and Technology, Xinjiang University, Urumqi 830046, China
| | - Jiarong Lv
- Key Laboratory of Oil & Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology & School of Physics and Technology, Xinjiang University, Urumqi 830046, China
| | - Peng Wang
- Key Laboratory of Oil & Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology & School of Physics and Technology, Xinjiang University, Urumqi 830046, China
| | - Xiaoyu Dong
- Department of Chemical and Environmental Engineering, Xinjiang Institute of Engineering, Urumqi 830091, China
| | - Qun Jing
- Key Laboratory of Oil & Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology & School of Physics and Technology, Xinjiang University, Urumqi 830046, China
| | - Zhaohui Chen
- Key Laboratory of Oil & Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology & School of Physics and Technology, Xinjiang University, Urumqi 830046, China
| |
Collapse
|