1
|
Veloso SRS, Azevedo AG, Teixeira PF, Fernandes CBP. Cellulose Nanocrystal (CNC) Gels: A Review. Gels 2023; 9:574. [PMID: 37504453 PMCID: PMC10379674 DOI: 10.3390/gels9070574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
The aim of this article is to review the research conducted in the field of aqueous and polymer composites cellulose nanocrystal (CNC) gels. The experimental techniques employed to characterize the rheological behavior of these materials will be summarized, and the main advantages of using CNC gels will also be addressed in this review. In addition, research devoted to the use of numerical simulation methodologies to describe the production of CNC-based materials, e.g., in 3D printing, is also discussed. Finally, this paper also discusses the application of CNC gels along with additives such as cross-linking agents, which can represent an enormous opportunity to develop improved materials for manufacturing processes.
Collapse
Affiliation(s)
- Sérgio R S Veloso
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Laboratory of Physics for Materials and Emergent Technologies (LaPMET), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Ana G Azevedo
- International Iberian Nanotechnology Laboratory (INL), Av. Mte. José Veiga s/n, 4715-330 Braga, Portugal
| | - Paulo F Teixeira
- Centre for Nanotechnology and Smart Materials (CeNTI), Rua Fernando Mesquita 2785, 4760-034 Vila Nova de Famalicão, Portugal
| | - Célio B P Fernandes
- Transport Phenomena Research Centre (CEFT), Faculty of Engineering at University of Porto (FEUP), Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
- Centre of Mathematics (CMAT), School of Sciences, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
2
|
Jansen-van Vuuren RD, Naficy S, Ramezani M, Cunningham M, Jessop P. CO 2-responsive gels. Chem Soc Rev 2023; 52:3470-3542. [PMID: 37128844 DOI: 10.1039/d2cs00053a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
CO2-responsive materials undergo a change in chemical or physical properties in response to the introduction or removal of CO2. The use of CO2 as a stimulus is advantageous as it is abundant, benign, inexpensive, and it does not accumulate in a system. Many CO2-responsive materials have already been explored including polymers, latexes, surfactants, and catalysts. As a sub-set of CO2-responsive polymers, the study of CO2-responsive gels (insoluble, cross-linked polymers) is a unique discipline due to the unique set of changes in the gels brought about by CO2 such as swelling or a transformed morphology. In the past 15 years, CO2-responsive gels and self-assembled gels have been investigated for a variety of emerging potential applications, reported in 90 peer-reviewed publications. The two most widely exploited properties include the control of flow (fluids) via CO2-triggered aggregation and their capacity for reversible CO2 absorption-desorption, leading to applications in Enhanced Oil Recovery (EOR) and CO2 sequestration, respectively. In this paper, we review the preparation, properties, and applications of these CO2-responsive gels, broadly classified by particle size as nanogels, microgels, aerogels, and macrogels. We have included a section on CO2-induced self-assembled gels (including poly(ionic liquid) gels).
Collapse
Affiliation(s)
- Ross D Jansen-van Vuuren
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Sina Naficy
- School of Chemical and Biomolecular Engineering, Centre for Excellence in Advanced Food Enginomics (CAFE), The University of Sydney, Sydney, NSW 2006, Australia
| | - Maedeh Ramezani
- Department of Chemistry, Chernoff Hall, Queen's University, Kingston, Ontario, K7K 2N1, Canada.
| | - Michael Cunningham
- Department of Engineering, Dupuis Hall, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Philip Jessop
- Department of Chemistry, Chernoff Hall, Queen's University, Kingston, Ontario, K7K 2N1, Canada.
| |
Collapse
|
3
|
Yu K, Chen L, Zhang W, Zhang H, Jia J, Wang Z, Li B, Zhang W, Xu H, Zuo L, Wang J, Pan J, Harbottle D. Behaviour of polymer-coated composite nanoparticles at bubble-stabilizing interfaces during bubble coarsening and accelerated coalescence: A Cryo-SEM study. J Colloid Interface Sci 2023; 633:113-119. [PMID: 36436345 DOI: 10.1016/j.jcis.2022.11.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/11/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022]
Abstract
HYPOTHESIS Dynamics of polymer-coated silica composite nanoparticles (CPs) during bubble coarsening is highly dominated by the behaviour of the polymer layer, while in-situ particle aggregation would lead to accelerated bubble coalescence. EXPERIMENTS CPs-stabilized foams were prepared in 0.1 M and 0.55 M Na2SO4 solution, referring to the 0.1 M and 0.55 M foam/bubble respectively. The 0.1 M to 0.55 M transition foam was also prepared. High resolution Cryo-SEM was originally used to investigate the CPs behaviour at the bubble-stabilizing interface during bubble coarsening and accelerated coalescence. FINDINGS The 0.1 M bubble-stabilizing interface buckles in uniaxial compression due to coarsening, with the CPs being observed to desorb from the interface. While the CPs were visualized to rearrange into crumpled particle multi-layers surrounding the shrinking 0.55 M bubbles, due to the adhesion between interpenetrating polymer chains and the unique lubrication effect of the PVP layers. The 0.1 M to 0.55 M transition foaming behaviour was also studied. Cracks and voids were observed at interfaces surrounding the transition bubbles driven by in-situ particle aggregation, resulting in accelerated bubble coalescence during the transition process.
Collapse
Affiliation(s)
- Kai Yu
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Liuhao Chen
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Weifeng Zhang
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Huagui Zhang
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Science, Fujian Normal University, Fuzhou 350007, China
| | - Jianguang Jia
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhentao Wang
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Bin Li
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Wei Zhang
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haojie Xu
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lei Zuo
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Junfeng Wang
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - David Harbottle
- School of Chemical and Process Engineering, University of Leeds, Leeds, U.K
| |
Collapse
|
4
|
Wei P, Guo K, Xie Y, Huang X. Liquid Foam Stabilized by a CO 2-Responsive Surfactant and Similarly Charged Cellulose Nanofibers for Reversibly Plugging in Porous Media. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37134-37148. [PMID: 35917120 DOI: 10.1021/acsami.2c08986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
CO2 foams are of great importance in oil recovery but challenging in some aspects like long-term stabilization and time-separated conflict. In this work, a stability-enhanced switchable foam was fabricated using bis-(2-hydroxyethoxy) olefine amine (BOA) and trace amounts (0.05 wt %) of cationic-modified cellulose nanofibers (CCNFs). The CCNF was developed using sequentially functionalized CNF with diamine groups, which were essential to promote the aqueous dispersibility and a key for strengthening the stabilization of foam. The combination of similarly charged CCNFs and BOA in the presence of CO2 contributed to both surface activity and viscoelasticity. It was demonstrated that CCNFs were entangled and stacked to form the compact films and possessed the ability to costabilize the lamellae, as observed by microscopic studies. In addition, the intermolecular H-bonds were promoted in the binary system after being protonated by CO2 and thus balancing the electrostatic forces, as explored by spectroscopy characterizations. The soft fibrous structure of the CCNF was also capable of wrapping gas bubbles in the form of a functional membrane with both low gas permeability and high surface potential, which slowed down the coarsening and coalescence. Of particular interest is that the reversible protonation state of CCNF-BOA complexes upon the alternate treatment with CO2/N2 led to reversible fast foaming/defoaming, which would be beneficial to construct the steerable plugging in the sand pack. This work is expected to provide a new direction and application of the CO2 responsive foam stabilized by similarly charged nanocellulose fibers in oilfield development.
Collapse
Affiliation(s)
- Peng Wei
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources & MOE Key Laboratory of Oil and Gas Fine Chemicals, College of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, China
| | - Kaidi Guo
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources & MOE Key Laboratory of Oil and Gas Fine Chemicals, College of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, China
| | - Yahong Xie
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources & MOE Key Laboratory of Oil and Gas Fine Chemicals, College of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, China
| | - Xueli Huang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources & MOE Key Laboratory of Oil and Gas Fine Chemicals, College of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, China
| |
Collapse
|