1
|
Dyguda M, Przydacz A, Albrecht Ł. Dearomative, aminocatalytic formal normal-electron-demand aza-Diels-Alder cycloaddition in the synthesis of tetrahydrofuropyridines. Chem Commun (Camb) 2023; 59:12903-12906. [PMID: 37819685 DOI: 10.1039/d3cc03946c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
In the manuscript the application of dearomative formal normal-electron-demand aza-Diels-Alder cycloaddition in the synthesis of tetrahydrofuropyridines is described. The developed approach utilizes aminocatalytic activation of 2-alkyl-3-furfurals that proceeds via formation of the dearomatized dienamine intermediate. Initially obtained cycloadducts have been subjected to subsequent transformations providing access to tetrahydrofuropyridines or functionalized cinnamates. The mechanism of the process has been confirmed by DFT calculations.
Collapse
Affiliation(s)
- Mateusz Dyguda
- Faculty of Chemistry, Institute of Organic Chemistry Lodz University of Technology Żeromskiego 114, 90-543 Lodz, Poland.
| | - Artur Przydacz
- Faculty of Chemistry, Institute of Organic Chemistry Lodz University of Technology Żeromskiego 114, 90-543 Lodz, Poland.
| | - Łukasz Albrecht
- Faculty of Chemistry, Institute of Organic Chemistry Lodz University of Technology Żeromskiego 114, 90-543 Lodz, Poland.
| |
Collapse
|
2
|
Qiu F, Wang Z, Zhao D, Zeng L, Zhang C, Zhu H, Zhang J, Shao J. Direct Access to 3-Thioether-Substituted Dihydrofuro[2,3- b]benzofurans via Tandem Reactions of Sulfur Ylides and 2-Nitrobenzofurans. J Org Chem 2023. [PMID: 37463066 DOI: 10.1021/acs.joc.3c00847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The synthesis of 3-thioether-substituted dihydrofuro[2,3-b]benzofurans involving the [3 + 2] coupling of sulfur ylides with 2-nitrobenzofurans has been realized in moderate to good yields under mild conditions without any precious catalysts or additives. It is worth mentioning that the reutilization of the departed nitro-anion in the reaction process facilitates this new chemical transformation and presents a manner of high atom economy to provide products with a complex structure.
Collapse
Affiliation(s)
- Fengkai Qiu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, People's Republic of China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Zheng Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, People's Republic of China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Dan Zhao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, People's Republic of China
| | - Linghui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, People's Republic of China
| | - Chong Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, People's Republic of China
| | - Huajian Zhu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, People's Republic of China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Jiankang Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, People's Republic of China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Jiaan Shao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, People's Republic of China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| |
Collapse
|
3
|
Sarkar A, Mistry S, Bhattacharya S, Natarajan S. Multistep Cascade Catalytic Reactions Employing Bifunctional Framework Compounds. Inorg Chem 2023. [PMID: 37393542 DOI: 10.1021/acs.inorgchem.3c01243] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Multistep cascade reactions are important to achieve atom as well as step economy over conventional synthesis. This approach, however, is limited due to the incompatibility of the available reactive centers in a catalyst. In the present study, new MOF compounds, [Zn2(SDBA)(3-ATZ)2]·solvent, I and II, with tetrahedral Zn centers as good Lewis acidic sites and the free amino group of the 3-amino triazole ligand as a strong Lewis base center were shown to perform 4-step cascade/tandem reaction in a facile manner. Effective conversion of benzaldehyde dimethyl acetal in the presence of excess nitromethane at 100 °C in water to 1-(1,3-dinitropropan-2-yl) benzene was achieved in 10 h with yields of ∼95% (I) and ∼94% (II). This 4-step cascade reaction proceeds via deacetalization (Lewis acid), Henry (Lewis base), and Michael (Lewis base) reactions. The present work highlights the importance of spatially separated functional groups in multistep tandem catalysis─the examples of which are not common.
Collapse
Affiliation(s)
- Anupam Sarkar
- Solid State and Structural Chemistry Unit, Framework Solids Laboratory, Indian Institute of Science, Bangalore 560012, India
| | - Subhradeep Mistry
- Department of Chemistry, Hemvati Nandan Bahuguna Garhwal University, SRT Campus, New Tehri 249199, Uttarakhand, India
| | - Saurav Bhattacharya
- Department of Chemistry, BITS Pilani K. K. Birla Goa Campus, Goa 403726, India
| | - Srinivasan Natarajan
- Solid State and Structural Chemistry Unit, Framework Solids Laboratory, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
4
|
Bhat MUS, Ganie MA, Rizvi MA, Raheem S, Shah BA. Photoredox Catalyzed Thioformylation of Terminal Alkynes Using Nitromethane as a Formyl Source. Org Lett 2022; 24:6658-6663. [PMID: 36047745 DOI: 10.1021/acs.orglett.2c02695] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A photoredox thioformylation of terminal alkynes using nitromethane as a formyl anion equivalent, thereby leading to the synthesis of (E)-1,2-difunctionalized acrylaldehyde, has been described. The current strategy introduces an adaptable aldehyde function across an alkyne and offers a new route to synthesizing α-alkyl/aryl aldehydes.
Collapse
Affiliation(s)
- Muneer-Ul-Shafi Bhat
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Majid Ahmad Ganie
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | | | - Shabnam Raheem
- Department of Chemistry, University of Kashmir, Srinagar 190006, India
| | - Bhahwal Ali Shah
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| |
Collapse
|