1
|
Boukhvalov DW, D'Olimpio G, Liu J, Ghica C, Istrate MC, Kuo CN, Politano GG, Lue CS, Torelli P, Zhang L, Politano A. Cost-effective, high-performance Ni 3Sn 4 electrocatalysts for methanol oxidation reaction in acidic environments. Chem Commun (Camb) 2023; 59:6040-6043. [PMID: 37185589 DOI: 10.1039/d3cc01623d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Methanol (CH3OH) oxidation offers a promising avenue for transitioning to clean energy, particularly in the field of direct methanol fuel cells (DMFCs). However, the development of efficient and cost-effective catalysts for the methanol oxidation reaction (MOR) remains a critical challenge. Herein, we report the exceptional electrocatalytic activity and stability of Ni3Sn4 toward MOR in acidic media, achieving a performance comparable to that of commercial Pt/C catalysts. Our catalyst design incorporates Earth-abundant Ni and Sn elements, resulting in a material that is 1800 times more cost-effective than Pt/C. Density functional theory (DFT) modeling substantiates our experimental findings, shedding light on the favorable reaction mechanisms and kinetics on the Ni3Sn4 surface. Additionally, the as-synthesized Ni3Sn4 electrocatalyst demonstrates commendable durability, maintaining its electrocatalytic activity even after prolonged exposure to harsh acidic conditions.
Collapse
Affiliation(s)
- Danil W Boukhvalov
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, P. R. China
- Institute of Physics and Technology, Ural Federal University, Mira Str. 19, 620002 Yekaterinburg, Russia
| | - Gianluca D'Olimpio
- Department of Physical and Chemical Sciences, University of L'Aquila, via Vetoio, 67100 L'Aquila (AQ), Italy.
| | - Junzhe Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China.
| | - Corneliu Ghica
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania
| | | | - Chia-Nung Kuo
- Department of Physics, National Cheng Kung University, 1 Ta-Hsueh Road, 70101 Tainan, Taiwan
| | - Grazia Giuseppina Politano
- Department of Information Engineering, Infrastructures and Sustainable Energy (DIIES), University "Mediterranea" of Reggio Calabria, Loc. Feo di Vito, 89122 Reggio Calabria, Italy
| | - Chin Shan Lue
- Department of Physics, National Cheng Kung University, 1 Ta-Hsueh Road, 70101 Tainan, Taiwan
| | - Piero Torelli
- CNR-IOM, TASC Laboratory, Area Science Park-Basovizza, 34139 Trieste, Italy
| | - Lixue Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China.
| | - Antonio Politano
- Department of Physical and Chemical Sciences, University of L'Aquila, via Vetoio, 67100 L'Aquila (AQ), Italy.
| |
Collapse
|
2
|
Huang X, Wang J, Zhao C, Gan LY, Xu H. The surface charge induced high activity of oxygen reduction reaction on the PdTe 2 bilayer. Phys Chem Chem Phys 2023; 25:4105-4112. [PMID: 36651805 DOI: 10.1039/d2cp05772g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Developing transition metal dichalcogenides as electrocatalysts has attracted great interest due to their tunable electronic properties and good thermal stabilities. Herein, we propose a PdTe2 bilayer as a promising electrocatalyst candidate towards the oxygen reduction reaction (ORR), based on extensive investigation of the electronic properties of PdTe2 thin films as well as atomic-level reaction kinetics at explicit electrode potentials. We verify that under electrochemical reducing conditions, the electron emerging on the electrode surface is directly transferred to O2 adsorbed on the PdTe2 bilayer, which greatly reduces the dissociation barrier of O2, and thereby facilitates the ORR to proceed via a dissociative pathway. Moreover, the barriers of the electrochemical steps in this pathway are all found to be less than 0.1 eV at the ORR limiting potential, demonstrating fast ORR kinetics at ambient conditions. This unique mechanism offers excellent energy efficiency and four-electron selectivity for the PdTe2 bilayer, and it is identified as a promising candidate for fuel cell applications.
Collapse
Affiliation(s)
- Xiang Huang
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Jiong Wang
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Changming Zhao
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Li-Yong Gan
- Institute for Structure and Function and Department of Physics, Chongqing University, Chongqing 400030, China
| | - Hu Xu
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China. .,Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen 518055, China.,Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
3
|
Qiao W, Zha M, Yang Y, Hu G, Feng L. Pd17Se15 alloy on Se sphere with high anti-poisoning ability for alcohol fuel electrooxidation. Chem Commun (Camb) 2022; 58:10651-10654. [DOI: 10.1039/d2cc04200b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron-deficient effect of Pd in the Pd17Se15 catalyst effectively weakens the adsorption of CO poisoning species and enhances the electrocatalytic performance of alcohol electrooxidation in an alkaline medium.
Collapse
|