1
|
Wang W, Zhang X, Weng S, Peng C. Tuning Catalytic Activity of CO 2 Hydrogenation to C1 Product via Metal Support Interaction Over Metal/Metal Oxide Supported Catalysts. CHEMSUSCHEM 2024; 17:e202400104. [PMID: 38546355 DOI: 10.1002/cssc.202400104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/16/2024] [Indexed: 04/28/2024]
Abstract
The metal supported catalysts are emerging catalysts that are receiving a lot of attention in CO2 hydrogenation to C1 products. Numerous experiments have demonstrated that the support (usually an oxide) is crucial for the catalytic performance. The support metal oxides are used to aid in the homogeneous dispersion of metal particles, prevent agglomeration, and control morphology owing to the metal support interaction (MSI). MSI can efficiently optimize the structural and electronic properties of catalysts and tune the conversion of key reaction intermediates involved in CO2 hydrogenation, thereby enhancing the catalytic performance. There is an increasing attention is being paid to the promotion effects in the catalytic CO2 hydrogenation process. However, a systematically understanding about the effects of MSI on CO2 hydrogenation to C1 products catalytic performance has not been fully studied yet due to the diversities in catalysts and reaction conditions. Hence, the characteristics and modes of MSI in CO2 hydrogenation to C1 products are elaborated in detail in our work.
Collapse
Affiliation(s)
- Weiwei Wang
- School of Life Sciences and Chemistry, School of MinNan Science, Technology University, Quanzhou, 362332, China
| | - Xiaoyu Zhang
- Sinochem Quanzhou Petrochemical Co., LTD., Quanzhou, 362100, China
| | - Shujia Weng
- School of Life Sciences and Chemistry, School of MinNan Science, Technology University, Quanzhou, 362332, China
| | - Chong Peng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, China
- Shanghai Research Center of Advanced Applied Technology, Shanghai, 201418, China
| |
Collapse
|
2
|
Zhao JW, Wang HY, Feng L, Zhu JZ, Liu JX, Li WX. Crystal-Phase Engineering in Heterogeneous Catalysis. Chem Rev 2024; 124:164-209. [PMID: 38044580 DOI: 10.1021/acs.chemrev.3c00402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The performance of a chemical reaction is critically dependent on the electronic and/or geometric structures of a material in heterogeneous catalysis. Over the past century, the Sabatier principle has already provided a conceptual framework for optimal catalyst design by adjusting the electronic structure of the catalytic material via a change in composition. Beyond composition, it is essential to recognize that the geometric atomic structures of a catalyst, encompassing terraces, edges, steps, kinks, and corners, have a substantial impact on the activity and selectivity of a chemical reaction. Crystal-phase engineering has the capacity to bring about substantial alterations in the electronic and geometric configurations of a catalyst, enabling control over coordination numbers, morphological features, and the arrangement of surface atoms. Modulating the crystallographic phase is therefore an important strategy for improving the stability, activity, and selectivity of catalytic materials. Nonetheless, a complete understanding of how the performance depends on the crystal phase of a catalyst remains elusive, primarily due to the absence of a molecular-level view of active sites across various crystal phases. In this review, we primarily focus on assessing the dependence of catalytic performance on crystal phases to elucidate the challenges and complexities inherent in heterogeneous catalysis, ultimately aiming for improved catalyst design.
Collapse
Affiliation(s)
- Jian-Wen Zhao
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, iChem, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hong-Yue Wang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, iChem, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Li Feng
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, iChem, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jin-Ze Zhu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, iChem, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jin-Xun Liu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, iChem, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Wei-Xue Li
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, iChem, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| |
Collapse
|
3
|
Deraet X, Turek J, Alonso M, Tielens F, Weckhuysen BM, Calatayud M, De Proft F. Understanding the Reactivity of Supported Late Transition Metals on a Bare Anatase (101) Surface: A Periodic Conceptual DFT Investigation. Chemphyschem 2023; 24:e202200785. [PMID: 36401599 DOI: 10.1002/cphc.202200785] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/17/2022] [Indexed: 11/21/2022]
Abstract
The rapidly growing interest for new heterogeneous catalytic systems providing high atomic efficiency along with high stability and reactivity triggered an impressive progress in the field of single-atom catalysis. Nevertheless, unravelling the factors governing the interaction strength between the support and the adsorbed metal atoms remains a major challenge. Based on periodic density functional theory (DFT) calculations, this paper provides insight into the adsorption of single late transition metals on a defect-free anatase surface. The obtained adsorption energies fluctuate, with the exception of Pd, between -3.11 and -3.80 eV and are indicative of a strong interaction. Depending on the considered transition metal, we could attribute the strength of this interaction with the support to i) an electron transfer towards anatase (Ru, Rh, Ni), ii) s-d orbital hybridisation effects (Pt), or iii) a synergistic effect between both factors (Fe, Co, Os, Ir). The driving forces behind the adsorption were also found to be strongly related to Klechkowsky's rule for orbital filling. In contrast, the deviating behaviour of Pd is most likely associated with the lower dissociation enthalpy of the Pd-O bond. Additionally, the reactivity of these systems was evaluated using the Fermi weighted density of states approach. The resulting softness values can be clearly related to the electron configuration of the catalytic systems as well as with the net charge on the transition metal. Finally, these indices were used to construct a model that predicts the adsorption strength of CO on these anatase-supported d-metal atoms. The values obtained from this regression model show, within a 95 % probability interval, a correlation of 84 % with the explicitly calculated CO adsorption energies.
Collapse
Affiliation(s)
- Xavier Deraet
- Department of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Elsene, 1050, Brussels, Belgium
| | - Jan Turek
- Department of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Elsene, 1050, Brussels, Belgium
| | - Mercedes Alonso
- Department of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Elsene, 1050, Brussels, Belgium
| | - Frederik Tielens
- Department of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Elsene, 1050, Brussels, Belgium
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Monica Calatayud
- Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, LCT, 75005, Paris, France
| | - Frank De Proft
- Department of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Elsene, 1050, Brussels, Belgium
| |
Collapse
|
4
|
Zhang L, Cui J, Zhang Y, San X, Meng D. Surface conversion of CuO–ZnO to ZIF-8 to enhance CO 2 adsorption for CO 2 hydrogenation to methanol. NEW J CHEM 2023. [DOI: 10.1039/d2nj05832d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
A novel CuO–ZnO@ZIF-8 catalyst with abundant oxygen vacancies and high CO2 adsorption capacity is synthesized for converting CO2 into CH3OH. Compared to the traditional CuO–ZnO catalyst, the catalyst in this work significantly improves the conversion and selectivity.
Collapse
Affiliation(s)
- Lei Zhang
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China
| | - Jia Cui
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China
| | - Yue Zhang
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China
| | - Xiaoguang San
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China
| | - Dan Meng
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China
| |
Collapse
|