1
|
Kashida J, Shoji Y, Taka H, Ishiwari F, Saeki A, Fukushima T. Peripheral Fusion of Carbon-Based Aromatic Rings to B 4N 4-Heteropentalene Leading to Close π-Stacking in the Solid State. Chemistry 2024; 30:e202402862. [PMID: 39212261 DOI: 10.1002/chem.202402862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
π-Electronic molecules with a BN-heterocyclic and carbon-based aromatic hybrid ring system (h-CBN) are interesting in that they potentially exhibit synergistic properties arising from the two different π-systems. Here we report the synthesis and properties of a h-CBN-type molecule (1) having a bicyclic B4N4-heteropentalene core fused with extended aromatic rings. This molecule exhibits excellent chemical stability despite the absence of bulky substituents for kinetic protection, which in turn provides effective stacking of the π-system upon crystallization. Depending on the crystallization solvent, 1 forms two polymorphs, i. e., the α- and β-phases. While both phases have one-dimensional columnar structures, the π-stacking geometries associated with the transfer integrals of the frontier orbitals are different, resulting in a twofold difference in the electrical conducting properties. We also found that upon thermal vacuum deposition, 1 gives an amorphous film, which serves as a host material for a red phosphorescent OLED device (maximum external quantum efficiency: 15.5 and 13.3 % at 0.1 and 2.5 mA, respectively).
Collapse
Affiliation(s)
- Junki Kashida
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
| | - Yoshiaki Shoji
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
- Research Center for Autonomous Systems Materialogy (ASMat), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Hideo Taka
- Konica Minolta, Ishikawa-cho, Hachioji, Tokyo, 192-8505, Japan
| | - Fumitaka Ishiwari
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Akinori Saeki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
- Research Center for Autonomous Systems Materialogy (ASMat), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| |
Collapse
|
2
|
Xu H, Yan H, Chen J, Zhang X, Zhang P, Li H, Meng H. Superior Hole Injection Material PEGDT/TPF/PVDF with p-Doping Capability for Highly Efficient Solution-Processed Organic Light-Emitting Diode. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54574-54586. [PMID: 39327980 DOI: 10.1021/acsami.4c11124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The ability to charge injection is a key factor in determining the performance of the organic light-emitting diode (OLED) devices. Improving the work function of the anode surface via interface modification, thus lowering the hole injection barrier, stands as a crucial strategy for enhancing the performance of the OLED device. Herein, we propose an innovative p-doping hole injection material, namely, PEGDT/TPF/PVDF that exhibits excellent performance in OLED devices with the value of maximum current efficiency at 56.4 Cd A-1, maximum luminescence at 25,564 Cd m-2, and a high EQE of 19.8%. The results for PEGDT/TPF/PVDF showed good conductivity, excellent film-forming property, and high transmittance over 98% in the spectrum range of 500-700 nm. Changes in the hole-injection energy barriers observed from the surface of the anode suggest a modified anode with PEGDT/TPF/PVDF deepened the work function at a value of 0.2 eV, which dramatically improves the hole-injection properties. This work not only provides novel structural materials with exceptional hole-injection properties but also proposes a promising alternative to PEDOT/PSS.
Collapse
Affiliation(s)
- Hong Xu
- School of Advanced Materials and School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Hao Yan
- School of Advanced Materials and School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Junmin Chen
- Tsinghua-Berkeley Shenzhen Institute Tsinghua University, Shenzhen 518055, Guangdong, P. R. China
- Institute of Materials Research (iMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, P. R. China
| | - Xiaopeng Zhang
- School of Advanced Materials and School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Pengli Zhang
- School of Advanced Materials and School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Hongyang Li
- School of Advanced Materials and School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Hong Meng
- School of Advanced Materials and School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| |
Collapse
|
3
|
Murata Y, Özen C, Maeda S, Fukushima T, Shoji Y. Skeletal rearrangement of a boron-containing annulenic molecule into a macrocycle bridged by an electronically stabilized boron cation. Chem Commun (Camb) 2023; 59:13635-13638. [PMID: 37905398 DOI: 10.1039/d3cc04830f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
An annulenic molecule containing a three-coordinate chloroborane moiety, which exhibits a borane-olefin proximity effect, undergoes a skeletal rearrangement upon chloride abstraction, to generate a three-dimensional macrocyclic molecule featuring a borocenium (η5-cyclopentadienyl-B+-R) structure.
Collapse
Affiliation(s)
- Yukihiro Murata
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Cihan Özen
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 060-8510, Japan.
- Department of Chemistry, Hokkaido University, Sapporo 060-8510, Japan
| | - Satoshi Maeda
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 060-8510, Japan.
- Department of Chemistry, Hokkaido University, Sapporo 060-8510, Japan
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
- Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Yoshiaki Shoji
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
4
|
Chikashige Y, Takehara T, Matsuzaki T, Suzuki T, Murai K, Arisawa M, Sako M. Axially Chiral Borinic Acid Catalysts: Design, Synthesis, and Application in Alkylative Desymmetrization of 1,2-Diols. J Org Chem 2023; 88:14178-14183. [PMID: 37715319 DOI: 10.1021/acs.joc.3c01143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
A novel chiral borinic acid (CBA), an organocatalyst possessing a binaphthyl skeleton, was designed and synthesized. The synthesis of CBA was achieved with a 72% yield in four steps starting with optically pure 1,1'-bi-2-naphthol. The asymmetric catalytic activity was investigated in the desymmetrization of meso-1,2-diol.
Collapse
Affiliation(s)
- Yuta Chikashige
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tsunayoshi Takehara
- Comprehensive Analysis Center, SANKEN, Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Tsuyoshi Matsuzaki
- Comprehensive Analysis Center, SANKEN, Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Takeyuki Suzuki
- Comprehensive Analysis Center, SANKEN, Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Kenichi Murai
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mitsuhiro Arisawa
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Makoto Sako
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
5
|
Adachi Y, Hasegawa T, Ohshita J. Highly luminescent antiaromatic diborinines with fused thiophene rings. Dalton Trans 2023. [PMID: 37357987 DOI: 10.1039/d3dt01841e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Tricoordinate boron-incorporated π-conjugated systems are widely investigated as optoelectronic materials because of their unique p-π* orbital interactions and high Lewis acidity. Among them, thiophene-fused diborinines are characterized by moderate antiaromaticity and extended conjugation. In this work, we have developed two new dithienodiborinines with C2h and C2v symmetries, which exhibited completely different optical properties. The thiophene-fused diborinines synthesized in this study showed excellent fluorescence properties both in solution and in the solid state, with quantum yields of up to 95%. The high antiaromaticity enhanced the Lewis acidity of the boron centers, as proven by the large association constants with fluoride ion estimated from titration experiments. The high Lewis acidity and the superior luminescence property have enabled their application as fluorescent sensor materials for the detection of ammonia vapor.
Collapse
Affiliation(s)
- Yohei Adachi
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan.
| | - Takumi Hasegawa
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan.
| | - Joji Ohshita
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan.
- Digital Monozukuri (Manufacturing) Education and Research Center, Hiroshima University, Higashi-Hiroshima 739-0046, Japan.
| |
Collapse
|
6
|
Kashida J, Shoji Y, Taka H, Fukushima T. Synthesis and Properties of B 4 N 4 -Heteropentalenes Fused with Polycyclic Hydrocarbons. Chemistry 2023; 29:e202203561. [PMID: 36734177 DOI: 10.1002/chem.202203561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
Hybrid molecules of π-conjugated carbon rings and BN-heterocyclic rings (h-CBNs) fused with each other have been a rare class of compounds due to the limited availability of their synthetic methods. Here we report the synthesis of new h-CBNs featuring a B4 N4 -heteropentalene core and polycyclic aromatic hydrocarbon wings. Using 1,2-azaborinine derivatives as a building block, we developed a rational synthetic protocol that allows the formation of a B4 N4 ring in a stepwise manner, resulting in the fully fused ABA-type triblock molecules. Thus, three derivatives of 1 bearing naphthalene (1Naph ), anthracene (1Anth ), or phenanthrene (1Phen ) wings fused with the B4 N4 core were synthesized and characterized. Among them, 1Phen , which displays the highest triplet-state energy, was found to serve a host material for phosphorescent OLED devices, for which a maximum external quantum efficiency of 13.7 % was recorded. These findings may promote the synthesis of various types of h-CBNs aiming at new properties arising from the synergy of two different π-electronic systems.
Collapse
Affiliation(s)
- Junki Kashida
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.,Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Yoshiaki Shoji
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.,Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Hideo Taka
- Konica Minolta Ishikawa-cho, Hachioji, Tokyo, 192-8505, Japan
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.,Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.,Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| |
Collapse
|
7
|
Naveen KR, Yang HI, Kwon JH. Double boron-embedded multiresonant thermally activated delayed fluorescent materials for organic light-emitting diodes. Commun Chem 2022; 5:149. [PMID: 36698018 PMCID: PMC9814903 DOI: 10.1038/s42004-022-00766-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/25/2022] [Indexed: 11/12/2022] Open
Abstract
The subclass of multi resonant thermally activated delayed fluorescent emitters (MR-TADF) containing boron atoms has garnered significant attention in the field of organic light emitting diode (OLED) research. Among boron-based MR-TADF emitters, double boron-embedded MR-TADF (DB-MR-TADF) emitters show excellent electroluminescence performances with high photoluminescence quantum yields, narrow band emission, and beneficially small singlet-triplet energy levels in all the full-color gamut regions. This article reviews recent progress in DB-MR-TADF emitters, with particular attention to molecular design concepts, synthetic routes, optoelectronic properties, and OLED performance, giving future prospects for real-world applications.
Collapse
Affiliation(s)
- Kenkera Rayappa Naveen
- Organic Optoelectronic Device Lab (OODL), Department of Information Display, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Hye In Yang
- Organic Optoelectronic Device Lab (OODL), Department of Information Display, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Jang Hyuk Kwon
- Organic Optoelectronic Device Lab (OODL), Department of Information Display, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|