1
|
Liang Y, Schettini R, Kern N, Manciocchi L, Izzo I, Spichty M, Bodlenner A, Compain P. Deconstructing Best-in-Class Neoglycoclusters as a Tool for Dissecting Key Multivalent Processes in Glycosidase Inhibition. Chemistry 2024; 30:e202304126. [PMID: 38221894 DOI: 10.1002/chem.202304126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/16/2024]
Abstract
Multivalency represents an appealing option to modulate selectivity in enzyme inhibition and transform moderate glycosidase inhibitors into highly potent ones. The rational design of multivalent inhibitors is however challenging because global affinity enhancement relies on several interconnected local mechanistic events, whose relative impact is unknown. So far, the largest multivalent effects ever reported for a non-polymeric glycosidase inhibitor have been obtained with cyclopeptoid-based inhibitors of Jack bean α-mannosidase (JBα-man). Here, we report a structure-activity relationship (SAR) study based on the top-down deconstruction of best-in-class multivalent inhibitors. This approach provides a valuable tool to understand the complex interdependent mechanisms underpinning the inhibitory multivalent effect. Combining SAR experiments, binding stoichiometry assessments, thermodynamic modelling and atomistic simulations allowed us to establish the significant contribution of statistical rebinding mechanisms and the importance of several key parameters, including inhitope accessibility, topological restrictions, and electrostatic interactions. Our findings indicate that strong chelate-binding, resulting from the formation of a cross-linked complex between a multivalent inhibitor and two dimeric JBα-man molecules, is not a sufficient condition to reach high levels of affinity enhancements. The deconstruction approach thus offers unique opportunities to better understand multivalent binding and provides important guidelines for the design of potent and selective multiheaded inhibitors.
Collapse
Affiliation(s)
- Yan Liang
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), University of Strasbourg|University of Haute-Alsace|CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67087, Strasbourg, France)
| | - Rosaria Schettini
- Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di, Salerno, 84084, Fisciano (Salerno), Italy
| | - Nicolas Kern
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), University of Strasbourg|University of Haute-Alsace|CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67087, Strasbourg, France)
| | - Luca Manciocchi
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), University of Strasbourg|University of Haute-Alsace|CNRS (UMR 7042)-IRJBD, 3 bis rue Alfred Werner, 68057, Mulhouse Cedex, France
| | - Irene Izzo
- Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di, Salerno, 84084, Fisciano (Salerno), Italy
| | - Martin Spichty
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), University of Strasbourg|University of Haute-Alsace|CNRS (UMR 7042)-IRJBD, 3 bis rue Alfred Werner, 68057, Mulhouse Cedex, France
| | - Anne Bodlenner
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), University of Strasbourg|University of Haute-Alsace|CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67087, Strasbourg, France)
| | - Philippe Compain
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), University of Strasbourg|University of Haute-Alsace|CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67087, Strasbourg, France)
| |
Collapse
|
2
|
D'Arminio N, Ruggiero V, Pierri G, Marabotti A, Tedesco C. Emerging role of carbonyl-carbonyl interactions in the classification of beta turns. Protein Sci 2024; 33:e4868. [PMID: 38100281 PMCID: PMC10806932 DOI: 10.1002/pro.4868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
Carbonyl-carbonyl interactions in peptides and proteins attracted considerable interest in recent years. Here, we report a survey of carbonyl-carbonyl interactions in cyclic peptides, depsipeptides, peptoids and discuss the relationship between backbone torsion angles and CO∙∙∙CO distances. In general, φ values in the range between -40° and -90° and between 40° and 90° correspond to CO∙∙∙CO distances below 3.22 Å. By extending the analysis of carbonyl-carbonyl interactions in different types of beta turns in proteins, we also highlight the role of direct or reciprocal carbonyl-carbonyl interactions in stabilizing the beta turn conformation for each specific type. We confirmed the new type II beta turn, detected by Dunbrack and coworkers, and named Pa, and detect the presence of a direct carbonyl-carbonyl interaction between the second and third residues of the turn. We also evidenced the existence of another new type II beta turn, named pA (following Dunbrack's notation), which represents the alternative conformation of Pa with opposite φ and ψ values and is characterized by a direct carbonyl-carbonyl interaction between the second and third residues of the turn. Finally, we show that the occurrence of CO∙∙∙CO interactions could be also advocated to explain from a chemical point of view the diversity of turn types.
Collapse
Affiliation(s)
- Nancy D'Arminio
- Department of Chemistry and Biology “A. Zambelli”University of SalernoFiscianoItaly
| | - Valentina Ruggiero
- Department of Chemistry and Biology “A. Zambelli”University of SalernoFiscianoItaly
- Present address:
Department of PharmacyUniversity of SalernoFiscianoItaly
| | - Giovanni Pierri
- Department of Chemistry and Biology “A. Zambelli”University of SalernoFiscianoItaly
| | - Anna Marabotti
- Department of Chemistry and Biology “A. Zambelli”University of SalernoFiscianoItaly
| | - Consiglia Tedesco
- Department of Chemistry and Biology “A. Zambelli”University of SalernoFiscianoItaly
| |
Collapse
|
3
|
Eastwood JRB, Weisberg EI, Katz D, Zuckermann RN, Kirshenbaum K. Guidelines for designing peptoid structures: Insights from the
Peptoid Data Bank. Pept Sci (Hoboken) 2023. [DOI: 10.1002/pep2.24307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Affiliation(s)
| | | | - Dana Katz
- Department of Chemistry New York University New York New York USA
| | | | - Kent Kirshenbaum
- Department of Chemistry New York University New York New York USA
| |
Collapse
|
4
|
Pollastrini M, Pasquinelli L, Górecki M, Balzano F, Cupellini L, Lipparini F, Uccello Barretta G, Marchetti F, Pescitelli G, Angelici G. A Unique and Stable Polyproline I Helix Sorted out from Conformational Equilibrium by Solvent Polarity. J Org Chem 2022; 87:13715-13725. [PMID: 36242553 PMCID: PMC9639007 DOI: 10.1021/acs.joc.2c01377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Polyproline I helical structures are often considered as the hidden face of their most famous geminal sibling, Polyproline II, as PPI is generally spotted only within a conformational equilibrium. We designed and synthesized a stable Polyproline I structure exploiting the striking tendency of (S)-indoline-2-carboxylic acid to drive the peptide bond conformation toward the cis amide isomer, when dissolved in polar solvents. The cooperative effect of only four amino acidic units is sufficient to form a preferential structure in solution. We shed light on this rare secondary structure with a thorough analysis of the spectroscopic and chiroptical properties of the tetramer, supported by X-ray crystallography and computational studies.
Collapse
Affiliation(s)
- Matteo Pollastrini
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Luca Pasquinelli
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Marcin Górecki
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy,Institute
of Organic Chemistry, Polish Academy of
Sciences, ul. Kasprzaka
44/52, Warsaw 01-224, Poland
| | - Federica Balzano
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Lorenzo Cupellini
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Filippo Lipparini
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Gloria Uccello Barretta
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Fabio Marchetti
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Gennaro Pescitelli
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy,
| | - Gaetano Angelici
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy,
| |
Collapse
|