1
|
Garcia M, Sommier A, Michau D, Batsale JC, Chevalier S. Operando Spectroelectrochemical Imaging of Concentration Fields and Tafel Kinetics in Microfluidic Electrochemical Devices. Anal Chem 2024; 96:16487-16492. [PMID: 39388145 DOI: 10.1021/acs.analchem.4c02642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
With the development of microtechnologies for energy conversion and storage, mass transfer and micromolar concentration variations need to be measured at the microscale. These advances need to be accompanied by novel imaging techniques with the capability of achieving high spatial resolution while detecting very small signal variations (less than 0.1%). Thus, in this study, a new microscopy technique is proposed based on a combination of electrochemical impedance spectroscopy (EIS) and visible imaging spectroscopy to measure the concentration fields at the micromolar scale in operando microfluidic fuel cells (MFCs). This technique exploits EIS modulation and Fourier analysis to reduce the noise during concentration field imaging. A mass transfer model in the periodic regime is derived to validate the measurements and to estimate the Tafel kinetics and mass diffusivities during potassium permanganate reduction from only one potential measurement. The proposed imaging method and mathematical framework presented in this study can be used to study binary electrochemical reactions without gas production.
Collapse
Affiliation(s)
- M Garcia
- Arts et Métiers Institute of Technology, CNRS, Université de Bordeaux, Bordeaux INP, Institut de Mécanique et d'Ingénierie (I2M), Bâtiment A11, 351 Cours de la Libération, 33405 Talence, France
- CNRS, Arts et Métiers Institute of Technology, Université de Bordeaux, Bordeaux INP, Institut de Mécanique et d'Ingénierie (I2M), Bâtiment A11, 351 Cours de la Libération, 33405 Talence, France
| | - A Sommier
- Arts et Métiers Institute of Technology, CNRS, Université de Bordeaux, Bordeaux INP, Institut de Mécanique et d'Ingénierie (I2M), Bâtiment A11, 351 Cours de la Libération, 33405 Talence, France
- CNRS, Arts et Métiers Institute of Technology, Université de Bordeaux, Bordeaux INP, Institut de Mécanique et d'Ingénierie (I2M), Bâtiment A11, 351 Cours de la Libération, 33405 Talence, France
| | - D Michau
- Université de Bordeaux, CNRS, Bordeaux INP, Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), F-33600 Pessac, France
| | - J-C Batsale
- Arts et Métiers Institute of Technology, CNRS, Université de Bordeaux, Bordeaux INP, Institut de Mécanique et d'Ingénierie (I2M), Bâtiment A11, 351 Cours de la Libération, 33405 Talence, France
- CNRS, Arts et Métiers Institute of Technology, Université de Bordeaux, Bordeaux INP, Institut de Mécanique et d'Ingénierie (I2M), Bâtiment A11, 351 Cours de la Libération, 33405 Talence, France
| | - S Chevalier
- Arts et Métiers Institute of Technology, CNRS, Université de Bordeaux, Bordeaux INP, Institut de Mécanique et d'Ingénierie (I2M), Bâtiment A11, 351 Cours de la Libération, 33405 Talence, France
- CNRS, Arts et Métiers Institute of Technology, Université de Bordeaux, Bordeaux INP, Institut de Mécanique et d'Ingénierie (I2M), Bâtiment A11, 351 Cours de la Libération, 33405 Talence, France
| |
Collapse
|
2
|
Sasaki Y, Ohshiro K, Lyu X, Kawashima T, Kamiko M, Tanaka H, Yamagami A, Ueno Y, Minami T. An extended-gate-type organic transistor for monitoring the Menschutkin reaction of tetrazole at a solid-liquid interface. Chem Commun (Camb) 2024; 60:9930-9933. [PMID: 39171508 DOI: 10.1039/d4cc03266g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
We herein propose an approach to visualize the Menschutkin reaction at an interface between a self-assembled monolayer with nucleophilic properties and water containing alkyl halides. An organic field-effect transistor functionalized with a nucleophilic monolayer has detected in situ alkylation depending on differences in the leaving group ability and the bulkiness of electrophilic alkyls.
Collapse
Affiliation(s)
- Yui Sasaki
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo, 153-8904, Japan
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Kohei Ohshiro
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Xiaojun Lyu
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Takayuki Kawashima
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Masao Kamiko
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Hikaru Tanaka
- Corporate Research Center, Toyobo Co., Ltd., 2-1-1 Katata, Otsu, Shiga, Japan
| | - Akari Yamagami
- Corporate Research Center, Toyobo Co., Ltd., 2-1-1 Katata, Otsu, Shiga, Japan
| | - Yoshinori Ueno
- Corporate Research Center, Toyobo Co., Ltd., 2-1-1 Katata, Otsu, Shiga, Japan
| | - Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| |
Collapse
|
3
|
Li M, Liu M, Qi F, Lin FR, Jen AKY. Self-Assembled Monolayers for Interfacial Engineering in Solution-Processed Thin-Film Electronic Devices: Design, Fabrication, and Applications. Chem Rev 2024; 124:2138-2204. [PMID: 38421811 DOI: 10.1021/acs.chemrev.3c00396] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Interfacial engineering has long been a vital means of improving thin-film device performance, especially for organic electronics, perovskites, and hybrid devices. It greatly facilitates the fabrication and performance of solution-processed thin-film devices, including organic field effect transistors (OFETs), organic solar cells (OSCs), perovskite solar cells (PVSCs), and organic light-emitting diodes (OLEDs). However, due to the limitation of traditional interfacial materials, further progress of these thin-film devices is hampered particularly in terms of stability, flexibility, and sensitivity. The deadlock has gradually been broken through the development of self-assembled monolayers (SAMs), which possess distinct benefits in transparency, diversity, stability, sensitivity, selectivity, and surface passivation ability. In this review, we first showed the evolution of SAMs, elucidating their working mechanisms and structure-property relationships by assessing a wide range of SAM materials reported to date. A comprehensive comparison of various SAM growth, fabrication, and characterization methods was presented to help readers interested in applying SAM to their works. Moreover, the recent progress of the SAM design and applications in mainstream thin-film electronic devices, including OFETs, OSCs, PVSCs and OLEDs, was summarized. Finally, an outlook and prospects section summarizes the major challenges for the further development of SAMs used in thin-film devices.
Collapse
Affiliation(s)
- Mingliang Li
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Ming Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Feng Qi
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Francis R Lin
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Alex K-Y Jen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| |
Collapse
|
4
|
Sasaki Y, Zhang Y, Ohshiro K, Tsuchiya K, Lyu X, Kamiko M, Ueno Y, Tanaka H, Minami T. An organic transistor for detecting the oxidation of an organic sulfur compound at a solid-liquid interface and its chemical sensing applications. Faraday Discuss 2024; 250:60-73. [PMID: 37975288 DOI: 10.1039/d3fd00149k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The development of chemical sensors has advanced due to an increase in demand; however, the potential of chemical sensors as devices to monitor organic reactions has not been revealed yet. Thus, we aim to propose a chemical sensor platform for facile monitoring of chemical reactions, especially at a solid-liquid interface. In this study, an extended-gate-type organic field-effect transistor (OFET) has been employed as a platform to detect chemical reactions at an interface between the extended-gate electrode and an aqueous solution. The OFET device functionalized with 4,4'-thiobisbenzenthiol has shown time- and concentration-dependent shifts in transistor characteristics upon adding H2O2. In a selectivity test using seven oxidant agents, the transistor responses depended on the oxidation of the organic sulfur compound (i.e., 4,4'-thiobisbenzenthiol) stemming from the ability of the oxidant agents. Therefore, the observed changes in the transistor characteristics have suggested the generation of sulfur-oxidized products at the interface. In this regard, the observed responses were caused by disulfide formation accompanied by changes in the charges under neutral pH conditions. Meanwhile, weak transistor responses derived from the generation of oxygen adducts have also been observed, which were caused by changes in the dipole moments. Indeed, the yields of the oxygen adducts have been revealed by X-ray photoelectron spectroscopy. The monitoring of gradual changes originating from the decrease in the disulfide formation and the increase in the oxygen adducts implied a novel aspect of the OFET device as a platform to simultaneously detect reversible and irreversible reactions at interfaces without using large-sized analytical instruments. Sulfur oxidation by H2O2 on the OFET device has been further applied to the indirect monitoring of an enzymatic reaction in solution. The OFET-based chemical sensor has shown continuous changes with an increase in a substance (i.e., lactate) in the presence of an enzyme (i.e., lactate oxidase), which indicates that the OFET response depends on the H2O2 generated through the enzymatic reaction in the solution. In this study, we have clarified the versatility of organic devices as platforms to monitor different chemical reactions using a single detection method.
Collapse
Affiliation(s)
- Yui Sasaki
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Yijing Zhang
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Kohei Ohshiro
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Kazuhiko Tsuchiya
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Xiaojun Lyu
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Masao Kamiko
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Yoshinori Ueno
- Corporate Research Center, Toyobo Co., Ltd, 2-1-1 Katata, Otsu, Shiga, 520-0292, Japan
| | - Hikaru Tanaka
- Corporate Research Center, Toyobo Co., Ltd, 2-1-1 Katata, Otsu, Shiga, 520-0292, Japan
| | - Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| |
Collapse
|
5
|
Shinar R, Shinar J. Organic Electronics-Microfluidics/Lab on a Chip Integration in Analytical Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:8488. [PMID: 37896581 PMCID: PMC10611406 DOI: 10.3390/s23208488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023]
Abstract
Organic electronics (OE) technology has matured in displays and is advancing in solid-state lighting applications. Other promising and growing uses of this technology are in (bio)chemical sensing, imaging, in vitro cell monitoring, and other biomedical diagnostics that can benefit from low-cost, efficient small devices, including wearable designs that can be fabricated on glass or flexible plastic. OE devices such as organic LEDs, organic and hybrid perovskite-based photodetectors, and organic thin-film transistors, notably organic electrochemical transistors, are utilized in such sensing and (bio)medical applications. The integration of compact and sensitive OE devices with microfluidic channels and lab-on-a-chip (LOC) structures is very promising. This survey focuses on studies that utilize this integration for a variety of OE tools. It is not intended to encompass all studies in the area, but to present examples of the advances and the potential of such OE technology, with a focus on microfluidics/LOC integration for efficient wide-ranging sensing and biomedical applications.
Collapse
Affiliation(s)
- Ruth Shinar
- Electrical & Computer Engineering Department, Iowa State University, Ames, IA 50011, USA
| | - Joseph Shinar
- Physics & Astronomy Department and Ames National Laboratory—USDOE, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|