1
|
Cheng C, Zhang S, Zhang J, Guan L, El-Khouly ME, Jin S. Mixed Crystalline Covalent Heptazine Frameworks with Built-in Heterojunction Structures towards Efficient Photocatalytic Formic Acid Dehydrogenation. Angew Chem Int Ed Engl 2024; 63:e202411359. [PMID: 39007748 DOI: 10.1002/anie.202411359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/16/2024]
Abstract
Covalent heptazine frameworks (CHFs) are widely utilized in the recent years as potential photocatalysts. However, their limited conjugated structures, low crystallinity and small surface areas have restricted the practical photocatalysis performance. Along this line, we report herein the synthesis of a kind of mixed crystalline CHF (m-CHF-1) with built-in heterojunction structure, which can efficiently catalyze the formic acid dehydrogenation by visible light driven photocatalysis. The m-CHF-1 is synthesized from 2,5,8-triamino-heptazine and dicyanobenzene (DCB) in the molten salts, in which DCB plays as organic molten co-solvent to promote the rapid and ordered polymerization of 2,5,8-triamino-heptazine. The m-CHF-1 is formed by embedding phenyl-linked heptazine (CHF-Ph) units in the poly(heptazine imide) (PHI) network similar to doping. The CHF-Ph combined with PHI form an effective type II heterojunction structure, which promote the directional transfer of charge carriers. And the integration of CHF-Ph makes m-CHF-1 have smaller exciton binding energy than pure PHI, the charge carriers are more easily dissociated to form free electrons, resulting in higher utilization efficiency of the carriers. The largest hydrogen evolution rate reaches a value of 42.86 mmol h-1 g-1 with a high apparent quantum yield of 24.6 % at 420 nm, which surpasses the majority of other organic photocatalysts.
Collapse
Affiliation(s)
- Cheng Cheng
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an, Shaanxi, 710049, China
| | - Siquan Zhang
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Jin Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an, Shaanxi, 710049, China
| | - Lijiang Guan
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an, Shaanxi, 710049, China
| | - Mohamed E El-Khouly
- Nanoscience Program, Institute of Basic and Applied Sciences (BAS), Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Shangbin Jin
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
2
|
Chen R, Liu G, Xia B, Liu T, Xia Y, Liu S, Talebian-Kiakalaieh A, Ran J. Unveiling the potential of MOF-based single-atom photocatalysts for the production of clean fuel and valuable chemical. Chem Commun (Camb) 2024; 60:10989-10999. [PMID: 39248681 DOI: 10.1039/d4cc03479a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Harnessing solar energy through photocatalysis has excellent potential for powering sustainable chemical production, supporting the United Nations' environmental goals. Single-atoms (SAs) dispersed on catalyst surfaces are gaining attention for their highly active and durable nature. Metal-organic frameworks (MOFs) can provide enough reactive sites to sustain selectivity and durability over time because of their tunable channels and functional groups. Owing to their organized structures, MOFs are ideal platforms for securing individual atoms and promoting solar-driven reactions. Few reviews have, however, reflected the possibility of combining MOFs and SAs to produce potent photocatalysts that may produce clean fuels and valuable chemicals. This review provides a general overview of methods for combining MOFs and SAs to generate photocatalysts. The challenges associated with these MOF-based single-atom systems are also critically examined. Their future development is discussed as continued refinement helps to more fully leverage their advantages for boosting photocatalytic performances - turning sunlight into chemicals in a manner that supports sustainable development. Insights gained here could illuminate pathways toward realizing the profound potential of MOF-based single-atom photocatalysts to empower production driven by renewable solar energy.
Collapse
Affiliation(s)
- Rundong Chen
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430074, P. R. China.
| | - Gaoxiong Liu
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430074, P. R. China.
| | - Bingquan Xia
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430074, P. R. China.
| | - Teng Liu
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430074, P. R. China
| | - Yang Xia
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430074, P. R. China
| | - Shantang Liu
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430074, P. R. China.
| | | | - Jingrun Ran
- School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
3
|
Pan H, Li J, Wang Y, Xia Q, Qiu L, Zhou B. Solar-Driven Biomass Reforming for Hydrogen Generation: Principles, Advances, and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402651. [PMID: 38816938 PMCID: PMC11304308 DOI: 10.1002/advs.202402651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/23/2024] [Indexed: 06/01/2024]
Abstract
Hydrogen (H2) has emerged as a clean and versatile energy carrier to power a carbon-neutral economy for the post-fossil era. Hydrogen generation from low-cost and renewable biomass by virtually inexhaustible solar energy presents an innovative strategy to process organic solid waste, combat the energy crisis, and achieve carbon neutrality. Herein, the progress and breakthroughs in solar-powered H2 production from biomass are reviewed. The basic principles of solar-driven H2 generation from biomass are first introduced for a better understanding of the reaction mechanism. Next, the merits and shortcomings of various semiconductors and cocatalysts are summarized, and the strategies for addressing the related issues are also elaborated. Then, various bio-based feedstocks for solar-driven H2 production are reviewed with an emphasis on the effect of photocatalysts and catalytic systems on performance. Of note, the concurrent generation of value-added chemicals from biomass reforming is emphasized as well. Meanwhile, the emerging photo-thermal coupling strategy that shows a grand prospect for maximally utilizing the entire solar energy spectrum is also discussed. Further, the direct utilization of hydrogen from biomass as a green reductant for producing value-added chemicals via organic reactions is also highlighted. Finally, the challenges and perspectives of photoreforming biomass toward hydrogen are envisioned.
Collapse
Affiliation(s)
- Hu Pan
- College of BiologicalChemical Science and EngineeringJiaxing University899 Guangqiong RoadJiaxingZhejiang314001China
- Key Laboratory for Power Machinery and Engineering of Ministry of EducationResearch Center for Renewable Synthetic FuelSchool of Mechanical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Jinglin Li
- Key Laboratory for Power Machinery and Engineering of Ministry of EducationResearch Center for Renewable Synthetic FuelSchool of Mechanical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Yangang Wang
- College of BiologicalChemical Science and EngineeringJiaxing University899 Guangqiong RoadJiaxingZhejiang314001China
| | - Qineng Xia
- College of BiologicalChemical Science and EngineeringJiaxing University899 Guangqiong RoadJiaxingZhejiang314001China
| | - Liang Qiu
- Key Laboratory for Power Machinery and Engineering of Ministry of EducationResearch Center for Renewable Synthetic FuelSchool of Mechanical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Baowen Zhou
- Key Laboratory for Power Machinery and Engineering of Ministry of EducationResearch Center for Renewable Synthetic FuelSchool of Mechanical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| |
Collapse
|
4
|
Zhang J, Zhu B, Zhang L, Yu J. Femtosecond transient absorption spectroscopy investigation into the electron transfer mechanism in photocatalysis. Chem Commun (Camb) 2023; 59:688-699. [PMID: 36598049 DOI: 10.1039/d2cc06300j] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Femtosecond transient absorption spectroscopy (fs-TAS) is a powerful technique for monitoring the electron transfer kinetics in photocatalysis. Several important works have successfully elucidated the electron transfer mechanism in heterojunction photocatalysts (HPs) using fs-TAS measurements, and thus a timely summary of recent advances is essential. This feature article starts with a thorough interpretation of the operating principle of fs-TAS equipment, and the fundamentals of the fs-TAS spectra. Subsequently, the applications of fs-TAS in analyzing the dynamics of photogenerated carriers in semiconductor/metal HPs, semiconductor/carbon HPs, semiconductor/semiconductor HPs, and multicomponent HPs are discussed in sequence. Finally, the significance of fs-TAS in revealing the ultrafast interfacial electron transfer process in HPs is summarized, and further research on the applications of fs-TAS in photocatalysis is proposed. This feature article will provide deep insight into the mechanism of the enhanced photocatalytic performance of HPs from the perspective of electron transfer kinetics.
Collapse
Affiliation(s)
- Jianjun Zhang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, P. R. China.
| | - Bicheng Zhu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, P. R. China.
| | - Liuyang Zhang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, P. R. China.
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, P. R. China.
| |
Collapse
|
5
|
Zinc– and Copper–Salicyaldimine complexes: Simultaneous observation of both metal–ligand coordination and weak CH⋯N contact about a single N-donor and the transmetallation reactions. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|