1
|
Torres-Oya S, Zurro M. Non-covalent organocatalyzed enantioselective cyclization reactions of α,β-unsaturated imines. Beilstein J Org Chem 2024; 20:3221-3255. [PMID: 39691215 PMCID: PMC11650568 DOI: 10.3762/bjoc.20.268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/22/2024] [Indexed: 12/19/2024] Open
Abstract
Asymmetric cycloaddition is a straightforward strategy which enables the synthesis of structurally distinct cyclic derivatives which are difficult to access by other methodologies, using an efficient and atom-economical path from simple precursors. In recent years several asymmetric catalytic cyclization strategies have been accomplished for the construction of N-heterocycles using various catalytic systems such as chiral metal catalysts, chiral Lewis acids or chiral organocatalysts. This review presents an overview of the recent advances in enantioselective cyclization reactions of 1-azadienes catalyzed by non-covalent organocatalysts.
Collapse
Affiliation(s)
- Sergio Torres-Oya
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. del Río” (IQAR), Universidad de Alcalá (IRYCIS), 28805 Madrid, Spain
| | - Mercedes Zurro
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. del Río” (IQAR), Universidad de Alcalá (IRYCIS), 28805 Madrid, Spain
| |
Collapse
|
2
|
Huang PF, Fu JL, Peng Y, Tang KW, Liu Y. Electrochemical Oxidative (4 + 2) Cyclization of Anilines and o-Phenylenediamines for the Synthesis of Phenazines. Org Lett 2024; 26:3756-3761. [PMID: 38678581 DOI: 10.1021/acs.orglett.4c00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Phenazines, crucial constituents of nitrogen-containing heterocycles, widely exist in functional compounds. Herein, we report an anodic oxidative (4 + 2) cyclization between anilines and o-phenylenediamines for the uniform construction of phenazines in a simple undivided cell. Dual C-H amination followed by oxidation represents an outstanding step and atom efficiency. A sequence of phenazines is produced with excellent functional group tolerance at room temperature.
Collapse
Affiliation(s)
- Peng-Fei Huang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Jia-Le Fu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Ying Peng
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| |
Collapse
|
3
|
Zhang R, Ma R, Chen R, Wang L, Ma Y. Regioselective C 3Alkylation of Indoles for the Synthesis of Bis(indolyl)methanes and 3-Styryl Indoles. J Org Chem 2024; 89:1846-1857. [PMID: 38214898 DOI: 10.1021/acs.joc.3c02551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Herein, we describe an efficient transition-metal-free regioselective C3alkylation of indoles for the synthesis of bis(indolyl)methanes and 3-styryl indoles. Nitrobenzene is employed as the oxidant to oxidize the alcohols in the presence of a strong base and the reaction avoids the use of transition metals such as Ru and Mn. The protocol provides a favorable route to access biologically active compounds such as arundine, vibrindole A, and turbomycin B.
Collapse
Affiliation(s)
- Ruiqin Zhang
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, P. R. China
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, P. R. China
| | - Renchao Ma
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, P. R. China
| | - Rener Chen
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, P. R. China
| | - Lei Wang
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, P. R. China
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Yongmin Ma
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, P. R. China
| |
Collapse
|
4
|
Song X, Qin W, Wang X, Luo G, Ni Q. Bifunctional Squaramide-Catalyzed Asymmetric Cascade Reaction of Benzothiazoles with 2-Nitroallylic Acetates or Nitroenynes. Org Lett 2023; 25:9164-9169. [PMID: 38097282 DOI: 10.1021/acs.orglett.3c03692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
We describe here an organocatalytic asymmetric cascade formal [3 + 3] cycloaddition of benzothiazoles with 2-nitroallylic acetates and nitroenynes. This dearomative methodology provided a facile and efficient strategy for the construction of a broad range of valuable benzothiazolopyridines bearing two adjacent stereogenic centers in moderate to good yields with good to excellent stereocontrol.
Collapse
Affiliation(s)
- Xiaoxiao Song
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Wei Qin
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Xuyang Wang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Gen Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Qijian Ni
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| |
Collapse
|
5
|
Gao H, Miao Y, Sun W, Zhao R, Xiao X, Hua Y, Jia S, Wang M, Mei G. Diversity-Oriented Catalytic Asymmetric Dearomatization of Indoles with o-Quinone Diimides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305101. [PMID: 37870177 PMCID: PMC10724437 DOI: 10.1002/advs.202305101] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/14/2023] [Indexed: 10/24/2023]
Abstract
Herein, the first diversity-oriented catalytic asymmetric dearomatization of indoles with o-quinone diimides (o-QDIs) is reported. The catalytic asymmetric dearomatization (CADA) of indoles is one of the research focuses in terms of the structural and biological importance of dearomatized indole derivatives. Although great achievements have been made in target-oriented CADA reactions, diversity-oriented CADA reactions are regarded as more challenging and remain elusive due to the lack of synthons featuring multiple reaction sites and the difficulty in precise control of chemo-, regio-, and enantio-selectivity. In this work, o-QDIs are employed as a versatile building block, enabling the chemo-divergent dearomative arylation and [4 + 2] cycloaddition reactions of indoles. Under the catalysis of chiral phosphoric acid and mild conditions, various indolenines, furoindolines/pyrroloindolines, and six-membered-ring fused indolines are collectively prepared in good yields with excellent enantioselectivities. This diversity-oriented synthesis protocol enriches the o-quinone chemistry and offers new opportunities for CADA reactions.
Collapse
Affiliation(s)
- Hao‐Jie Gao
- College of ChemistryPingyuan LaboratoryZhengzhou UniversityZhengzhou450001China
| | - Yu‐Hang Miao
- College of ChemistryPingyuan LaboratoryZhengzhou UniversityZhengzhou450001China
| | - Wen‐Na Sun
- College of ChemistryPingyuan LaboratoryZhengzhou UniversityZhengzhou450001China
| | - Rui Zhao
- College of ChemistryPingyuan LaboratoryZhengzhou UniversityZhengzhou450001China
| | - Xiao Xiao
- Collaborative Innovation Center of Yangtze River Delta Region Green PharmaceuticalsZhejiang University of TechnologyHangzhou310014China
| | - Yuan‐Zhao Hua
- College of ChemistryPingyuan LaboratoryZhengzhou UniversityZhengzhou450001China
| | - Shi‐Kun Jia
- College of ChemistryPingyuan LaboratoryZhengzhou UniversityZhengzhou450001China
| | - Min‐Can Wang
- College of ChemistryPingyuan LaboratoryZhengzhou UniversityZhengzhou450001China
| | - Guang‐Jian Mei
- College of ChemistryPingyuan LaboratoryZhengzhou UniversityZhengzhou450001China
| |
Collapse
|
6
|
Mo NN, Miao YH, Xiao X, Hua YZ, Wang MC, Huang L, Mei GJ. Catalytic asymmetric de novo construction of 4-pyrrolin-2-ones via intermolecular formal [3+2] cycloaddition of azoalkenes with azlactones. Chem Commun (Camb) 2023; 59:5902-5905. [PMID: 37097750 DOI: 10.1039/d3cc01194a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
The chiral phosphoric acid-catalyzed asymmetric intermolecular formal [3+2] cycloaddition of azoalkenes with azlactones has been established. This convergent protocol leads to a facile and enantioselective de novo construction of a wide range of fully substituted 4-pyrrolin-2-ones bearing a fully substituted carbon atom in good yields and with excellent enantioselectivities (26 examples, 72-95% yields and 87-99% ee).
Collapse
Affiliation(s)
- Nan-Nan Mo
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Yu-Hang Miao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiao Xiao
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Yuan-Zhao Hua
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Min-Can Wang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Lihua Huang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Guang-Jian Mei
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
7
|
Yang FY, Han TJ, Jia SK, Wang MC, Mei GJ. Catalytic [2,3]-sigmatropic rearrangement of sulfonium ylides derived from azoalkenes: non-carbenoid Doyle-Kirmse reaction. Chem Commun (Camb) 2023; 59:3107-3110. [PMID: 36808428 DOI: 10.1039/d3cc00160a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The Sc(III)-catalyzed [2,3]-sigmatropic rearrangement of sulfonium ylides derived from azoalkenes has been established. Owing to the absence of a carbenoid intermediate, this protocol represents the first non-carbenoid variant of the Doyle-Kirmse reaction. Under mild conditions, a variety of tertiary thioethers have been readily prepared in good to excellent yields.
Collapse
Affiliation(s)
- Fu-Yuan Yang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Tian-Jiao Han
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Shi-Kun Jia
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Min-Can Wang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Guang-Jian Mei
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
8
|
Diaza-1,3-butadienes as Useful Intermediate in Heterocycles Synthesis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196708. [PMID: 36235245 PMCID: PMC9573662 DOI: 10.3390/molecules27196708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/05/2022]
Abstract
Many heterocyclic compounds can be synthetized using diaza-1,3-butadienes (DADs) as key structural precursors. Isolated and in situ diaza-1,3-butadienes, produced from their respective precursors (typically imines and hydrazones) under a variety of conditions, can both react with a wide range of substrates in many kinds of reactions. Most of these reactions discussed here include nucleophilic additions, Michael-type reactions, cycloadditions, Diels–Alder, inverse electron demand Diels–Alder, and aza-Diels–Alder reactions. This review focuses on the reports during the last 10 years employing 1,2-diaza-, 1,3-diaza-, 2,3-diaza-, and 1,4-diaza-1,3-butadienes as intermediates to synthesize heterocycles such as indole, pyrazole, 1,2,3-triazole, imidazoline, pyrimidinone, pyrazoline, -lactam, and imidazolidine, among others. Fused heterocycles, such as quinazoline, isoquinoline, and dihydroquinoxaline derivatives, are also included in the review.
Collapse
|
9
|
Construction of Non-Biaryl Atropisomeric Amide Scaffolds Bearing a C-N Axis via Enantioselective Catalysis. Molecules 2022; 27:molecules27196583. [PMID: 36235120 PMCID: PMC9572367 DOI: 10.3390/molecules27196583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 11/07/2022] Open
Abstract
The significant scaffold offered by atropisomeric amides with a C–N chiral axis has been extensively utilized for pharmaceuticals, agricultural science, and organic syntheses. As a result, the field of atropisomer synthesis has attracted considerable interest within chemistry communities. To date, a range of catalytic atroposelective approaches has been reported for the efficient construction of these challenging scaffolds. However, greatly concise and highly useful methodologies for the synthesis of these atropisomeric compounds, focusing on transition-metal, chiral amine, and phosphoric acid catalysis reactions, etc., are still desirable. Hence, it is indispensable to succinctly and systematically present all such reports by means of disclosing the mechanistic analysis and application, as well as the challenges and issues associated with the establishment of these atropisomers. In this review, we summarize the development of catalytic asymmetric synthetic strategies to access non-biaryl atropisomers rotating around a C–N chiral axis, including the reaction methods, mechanism, late-stage transformations, and applications.
Collapse
|
10
|
Gao HJ, Miao YH, Jia SK, Li N, Xu LP, Wang W, Wang MC, Mei GJ. Azo group-enabled metal- and oxidant-free alkenyl C–H thiolation: Access to stereodefined tetrasubstituted acyclic olefins. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|