1
|
Li W, Peng X, Qin H, Xu Y, Han J, Lei H, Cao R. Electrocatalytic hydrogen evolution reaction with a Cu porphyrin bearing meso-CF 3 substituents. Dalton Trans 2024; 53:19121-19125. [PMID: 39588664 DOI: 10.1039/d4dt03098b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Cu tetrakis(trifluoromethyl)porphyrin (1) was synthesized and examined as an electrocatalyst for the hydrogen evolution reaction (HER). We showed that 1 is highly efficient for the electrocatalytic HER in acetonitrile with trifluoroacetic acid (TFA) and outperforms Cu tetrakis(pentafluorophenyl)porphyrin (2) by decreasing the onset overpotential by 220 mV. The icat/ip value (icat is the catalytic peak current and ip is the non-catalytic peak current) with 1 is 97, while it is 53 with 2. These results suggest that for Cu porphyrins, meso-CF3 substituents are much more effective than meso-C6F5 substituents to enhance the HER.
Collapse
Affiliation(s)
- Wenzi Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Xinyang Peng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Haonan Qin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Yuhan Xu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Jinxiu Han
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
2
|
Wang A, Yang X, Wang Q, Dou Y, Zhao L, Zhu W, Zhao W, Zhu G. Acenaphthenediimine complex-bridged porphyrin porous organic polymer with enriched active sites as a robust water splitting electrocatalyst. J Colloid Interface Sci 2024; 657:748-756. [PMID: 38071823 DOI: 10.1016/j.jcis.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 01/02/2024]
Abstract
To realize efficient water splitting, a highly promising hydrogen evolution reaction (HER) electrocatalyst is needed for the generation of hydrogen. Herein, we demonstrate a novel acenaphthenediimine complex-bridged porphyrin porous organic polymer (NiTAPP-NiACQ) with enriched active metal sites and hierarchical pores. The as-prepared NiTAPP-NiACQ exhibits good long-term durability and remarkable HER performance in 1.0 M KOH with a low overpotential of 117 mV at 10 mA cm-2, which is comparable to many previously reported electrocatalytic HER systems. Furthermore, a simple water-alkali electrolyzer using NiTAPP-NiACQ as the cathode requires a small cell voltage of 1.59 V to deliver a current density of 10 mA cm-2 at room temperature, along with outstanding durability. NiTAPP-NiACQ features not only a metal ion as the catalytic active center in the porphyrin core but also metal ion coordination on the anthraquinone component to promote HER performance, enabling multiple metal ions as the electrocatalytic active sites for the HER reaction. The excellent HER activity of NiTAPP-NiACQ is ascribed to a combination of mechanisms. These findings highlight the viability of porphyrin-derived porous organic polymers in energy conversion processes.
Collapse
Affiliation(s)
- Aijian Wang
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Xin Yang
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Qi Wang
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yuqin Dou
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Long Zhao
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Weihua Zhu
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Wei Zhao
- School of Energy & Power Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Guisheng Zhu
- Institute of SOPO, Jiangsu SOPO Corporation (Group) LTD, Zhenjiang 212006, PR China
| |
Collapse
|
3
|
Dou Y, Wang A, Zhao L, Yang X, Wang Q, Shire Sudi M, Zhu W, Shang D. Boosted hydrogen evolution reaction for a nitrogen-rich azo-bridged metallated porphyrin network. J Colloid Interface Sci 2023; 650:943-950. [PMID: 37453318 DOI: 10.1016/j.jcis.2023.07.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/03/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
The potential of porous organic polymers (POPs) toward electrocatalytic water splitting have attracted considerable scientific attention, due to their high specific surface areas, superlative porosity and diverse electronic structures; yet it remains challenging. Herein, we report a facile synthesized novel nitrogen-rich azo-bridged metallated porphyrin POP (CoTAPP-CoTNPP) for improving the hydrogen evolution reaction (HER) activity. The incorporation of the cobalt porphyrins and the azo groups endows CoTAPP-CoTNPP with effective charge transfer efficiency and large π-conjugated porous frameworks, thus enhancing the HER performance. Origins of the excellent HER performance of the material are evaluated using a series of structural and electrochemical measurements. Remarkably, CoTAPP-CoTNPP exhibits low overpotentials of 103 and 170 mV to reach 10 mA cm-2 in acidic and alkaline media, respectively, outperforming many previously reported HER electrocatalysts. These results demonstrate the enormous potential of the as-prepared azo-linked porphyrin POP for electrocatalytic water splitting.
Collapse
Affiliation(s)
- Yuqin Dou
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Aijian Wang
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Long Zhao
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xin Yang
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Qi Wang
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - M Shire Sudi
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Weihua Zhu
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Danhong Shang
- School of Energy & Power Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
4
|
Peng X, Han J, Li X, Liu G, Xu Y, Peng Y, Nie S, Li W, Li X, Chen Z, Peng H, Cao R, Fang Y. Electrocatalytic hydrogen evolution with a copper porphyrin bearing meso-( o-carborane) substituents. Chem Commun (Camb) 2023; 59:10777-10780. [PMID: 37593777 DOI: 10.1039/d3cc03104g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
A newly designed copper complex of 5,15-bis(pentafluorophenyl)-10,20-bis(o-carborane)porphyrin (1) was synthesized and tested for the electrocatalytic hydrogen evolution reaction (HER). In acetonitrile, 1 was much more efficient than Cu 5,15-bis(pentafluorophenyl)-10,20-diphenylporphyrin (2) for electrocatalytic HER by shifting the catalytic wave to the anodic direction by 190 mV. In aqueous media, 1 also outperformed 2 by achieving higher current densities under smaller overpotentials. This enhancement was attributed to the aromatic and the strong electron-withdrawing properties of o-carborane groups. This work is significant to address the crucial effects of meso-(o-carborane) substituents of metal porphyrins on boosting the electrocatalytic HER.
Collapse
Affiliation(s)
- Xinyang Peng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Jinxiu Han
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Xialiang Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Guijun Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Yuhan Xu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Yuxin Peng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Shuai Nie
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Wenzi Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Xinrui Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Zhuo Chen
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Haonan Peng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
5
|
Zhang Y, Chen S, Zhang Y, Li R, Zhao B, Peng T. Hydrogen-Bond Regulation of the Microenvironment of Ni(II)-Porphyrin Bifunctional Electrocatalysts for Efficient Overall Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210727. [PMID: 36787904 DOI: 10.1002/adma.202210727] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/10/2023] [Indexed: 05/12/2023]
Abstract
Accurately regulating the microenvironment around active sites is an important approach for boosting the overall water splitting performance of bifunctional electrocatalysts, which can drive both the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER) in the same electrolyte. Herein, pseudo-pyridine-substituted Ni(II)-porphyrins (o-NiTPyP, m-NiTPyP, and p-NiTPyP) with pseudo-pyridine N-atoms located at the ortho-, meta-, or para-position are prepared and used as model catalysts for alkaline water splitting. Experimental and theoretical results reveal that the pseudo-pyridine N-atom positions can regulate the microenvironment around the active sites and the adsorption free energy of H-donating substances by affecting the H-bonding interaction and the NNiN bond angles of active sites, and thus those pseudo-pyridine-substituted Ni(II)-porphyrins deliver better electrocatalytic activity than the Ni(II)-tetraphenylporphyrin (NiTPP) without pseudo-pyridine N-atoms. Among them, m-NiTPyP on carbon nanotubes delivers the lowest overpotentials of 267 and 138 mV at 10 mA cm-2 for the OER and HER, respectively. Specifically, m-NiTPyP as bifunctional electrocatalyst in an alkaline electrolyzer requires only 1.62 V to drive efficient overall water splitting at 10 mA cm-2 while remaining durable. This work proposes a new H-bond-regulating approach of the microenvironment of electrocatalysts for effectively boosting the overall water splitting activity and deeply understanding its related mechanism.
Collapse
Affiliation(s)
- Yanyan Zhang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds and Materials, Wuhan University, Wuhan, 430072, China
| | - Shengtao Chen
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds and Materials, Wuhan University, Wuhan, 430072, China
| | - Yuexing Zhang
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou, 253023, China
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Renjie Li
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds and Materials, Wuhan University, Wuhan, 430072, China
| | - Bing Zhao
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Tianyou Peng
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds and Materials, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
6
|
Dou Y, Yang X, Wang Q, Yang Z, Wang A, Zhao L, Zhu W. Efficient hydrogen generation of a cobalt porphyrin-bridged covalent triazine polymer. J Colloid Interface Sci 2023; 644:256-263. [PMID: 37120874 DOI: 10.1016/j.jcis.2023.04.082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023]
Abstract
Hydrogen production obtained by electrocatalytic water splitting exhibits great promise in addressing both energy shortage and environmental contamination. Herein, we prepared a novel cobalt porphyrin (CoTAPP)-bridged covalent triazine polymer (CoTAPPCC) by covalently linking CoTAPP with cyanuric chloride (CC) for catalytic hydrogen evolution reaction (HER). Both experimental techniques and density functional theory (DFT) calculations were used to evaluate the correlation of HER activity with molecular structures. Benefiting from the strong electronic interactions between the CC unit and the CoTAPP moiety, a standard current density at 10 mA cm-2 is obtained for CoTAPPCC with a low overpotential of 150 mV in acid, which is comparable to or better than the best records reported previously. Additionally, a competitive HER activity in basic medium is obtained for CoTAPPCC. The strategy reported herein is valuable for designing and developing porphyrin-based efficient HER electrocatalysts.
Collapse
Affiliation(s)
- Yuqin Dou
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xin Yang
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Qi Wang
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhaodi Yang
- College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, PRChina.
| | - Aijian Wang
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Long Zhao
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Weihua Zhu
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
7
|
Metallocavitins as Advanced Enzyme Mimics and Promising Chemical Catalysts. Catalysts 2023. [DOI: 10.3390/catal13020415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
The supramolecular approach is becoming increasingly dominant in biomimetics and chemical catalysis due to the expansion of the enzyme active center idea, which now includes binding cavities (hydrophobic pockets), channels and canals for transporting substrates and products. For a long time, the mimetic strategy was mainly focused on the first coordination sphere of the metal ion. Understanding that a highly organized cavity-like enzymatic pocket plays a key role in the sophisticated functionality of enzymes and that the activity and selectivity of natural metalloenzymes are due to the effects of the second coordination sphere, created by the protein framework, opens up new perspectives in biomimetic chemistry and catalysis. There are two main goals of mimicking enzymatic catalysis: (1) scientific curiosity to gain insight into the mysterious nature of enzymes, and (2) practical tasks of mankind: to learn from nature and adopt from its many years of evolutionary experience. Understanding the chemistry within the enzyme nanocavity (confinement effect) requires the use of relatively simple model systems. The performance of the transition metal catalyst increases due to its retention in molecular nanocontainers (cavitins). Given the greater potential of chemical synthesis, it is hoped that these promising bioinspired catalysts will achieve catalytic efficiency and selectivity comparable to and even superior to the creations of nature. Now it is obvious that the cavity structure of molecular nanocontainers and the real possibility of modifying their cavities provide unlimited possibilities for simulating the active centers of metalloenzymes. This review will focus on how chemical reactivity is controlled in a well-defined cavitin nanospace. The author also intends to discuss advanced metal–cavitin catalysts related to the study of the main stages of artificial photosynthesis, including energy transfer and storage, water oxidation and proton reduction, as well as highlight the current challenges of activating small molecules, such as H2O, CO2, N2, O2, H2, and CH4.
Collapse
|
8
|
Cai G, Wang T, Wei Q, Tong C, Cao Y, Shi S, Chen Y, Guo Y. Weaving microscale wool ball-like hollow covalent organic polymers from nanorods for efficient adsorption and sensing. Chem Commun (Camb) 2022; 58:11571-11574. [PMID: 36165975 DOI: 10.1039/d2cc04254a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microscale covalent organic polymers with a unique 3D hollow wool ball-like morphology have been woven from 1D nanorods by a cascade emulsion strategy with a large surface area (284 m2 g-1), which showed great potential for simultaneous removal (Qmax, 358.15 mg g-1) and fluorescent detection (detection limit, 8.0 μg L-1) of bisphenol A.
Collapse
Affiliation(s)
- Guihan Cai
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Tongtao Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Qisheng Wei
- Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise 533612, Guangxi, China
| | - Chaoying Tong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Yuanxin Cao
- Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise 533612, Guangxi, China
| | - Shuyun Shi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China. .,Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise 533612, Guangxi, China.,Department of Clinical Pharmacology, Xiangya Hospital, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan, China.
| | - Yuxia Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Ying Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan, China.
| |
Collapse
|
9
|
Wang H, Ren J, Wang A, Wang Q, Zhao W, Zhao L. Synergistic catalysis of graphitic carbon nitride supported bimetallic sulfide nanostructures for efficient oxygen generation. Chem Commun (Camb) 2022; 58:9202-9205. [PMID: 35894838 DOI: 10.1039/d2cc03619c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a series of g-C3N4 supported bimetallic sulfide nanostructures (Ni3S2/MoS2/ng-C3N4, n = 10, 20 and 30) was prepared by a hydrothermal method and subsequently a thermal annealing approach. Ni3S2/MoS2/20g-C3N4 with controlled composition exhibits efficient OER activity with a low overpotential of 183 mV at 10 mA cm-2, which outperforms the vast majority of sulfide OER electrocatalysts reported previously.
Collapse
Affiliation(s)
- Huixian Wang
- School of Energy & Power Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China.
| | - Jinshen Ren
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Aijian Wang
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Qian Wang
- School of Energy & Power Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China.
| | - Wei Zhao
- School of Energy & Power Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China.
| | - Long Zhao
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| |
Collapse
|