1
|
Guo K, Sun Y, Sun Y, Shang J, Lu Y, Wu Q. Copper-Catalyzed Trifunctionalization of Heteroaryl-Substituted 1-Hexenes via Remote Heteroaryl Migration. Chem Asian J 2024:e202400988. [PMID: 39267120 DOI: 10.1002/asia.202400988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 09/14/2024]
Abstract
A copper-catalyzed trifunctionalization (trifluoromethylation, heteroarylation, and cyanation) of heteroaryl-substituted 1-hexenes via remote heteroaryl migration is reported. A variety of CF3 and heteroaryl-containing nitriles were readily constructed under mild conditions. The reaction features high chemo- and regioselectivities and represents a convenient method for the synthesis of multifunctionalized molecules in organic synthesis.
Collapse
Affiliation(s)
- Kang Guo
- Hebei Normal University for Nationalities, Chengde, Hebei Province, China
| | - Yanwen Sun
- Hebei Normal University for Nationalities, Chengde, Hebei Province, China
| | - Yining Sun
- Hebei Normal University for Nationalities, Chengde, Hebei Province, China
| | - Jiayi Shang
- Hebei Normal University for Nationalities, Chengde, Hebei Province, China
| | - Yongchao Lu
- Hebei Normal University for Nationalities, Chengde, Hebei Province, China
| | - Qiong Wu
- Hebei Normal University for Nationalities, Chengde, Hebei Province, China
| |
Collapse
|
2
|
Zhang Q, Ma X, Zhi S, Zhang W. Radical-Mediated Trifunctionalization Reactions. Molecules 2024; 29:3620. [PMID: 39125025 PMCID: PMC11314562 DOI: 10.3390/molecules29153620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Synthetic radicals have intrinsic power for cascading and multifunctional reactions to construct diverse molecular scaffolds. In the previous review series, we covered 1,2-difunctionalizations, remote 1,3-, 1,4-, 1,5-, 1,6-, and 1,7-difunctionalizations, addition followed by cyclization reactions, and cycloaddition-initiated difunctionalizations. Presented in this paper are radical addition-initiated trifunctionalization reactions of alkenes, alkynes, and their derivatives. After the initial radical addition, there are different pathways, such as group or hydrogen atom transfer, cyclization, and radical coupling, to complete the second and third functionalizations.
Collapse
Affiliation(s)
- Qiang Zhang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou 215009, China
| | - Xiaoming Ma
- School of Pharmacy, Changzhou University, 1 Gehu Road, Changzhou 213164, China;
| | - Sanjun Zhi
- Jiangsu Key Laboratory for the Chemistry of Low-Dimensional Materials, Huaiyin Normal University, 111 Changjiang West Road, Huaian 223300, China
| | - Wei Zhang
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125, USA
| |
Collapse
|
3
|
Lian F, Li JL, Xu K. When transition-metal catalysis meets electrosynthesis: a recent update. Org Biomol Chem 2024; 22:4390-4419. [PMID: 38771266 DOI: 10.1039/d4ob00484a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
While aiming at sustainable synthesis, organic electrosynthesis has attracted increasing attention in the past few years. In parallel, with a deeper understanding of catalyst and ligand design, 3d transition-metal catalysis allows the conception of more straightforward synthetic routes in a cost-effective fashion. Owing to their intrinsic advantages, the merger of organic electrosynthesis with 3d transition-metal catalysis has offered huge opportunities for conceptually novel transformations while limiting ecological footprint. This review summarizes the key advancements in this direction published in the recent two years, with specific focus placed on strategy design and mechanistic aspects.
Collapse
Affiliation(s)
- Fei Lian
- School of Medicine, Henan Engineering Research Center of Funiu Mountain's Medicinal Resources Utilization and Molecular Medicine, Pingdingshan University, Pingdingshan 467000, China.
| | - Jiu-Ling Li
- School of Medicine, Henan Engineering Research Center of Funiu Mountain's Medicinal Resources Utilization and Molecular Medicine, Pingdingshan University, Pingdingshan 467000, China.
| | - Kun Xu
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
4
|
Zheng YT, Xu HC. Electrochemical Azidocyanation of Alkenes. Angew Chem Int Ed Engl 2024; 63:e202313273. [PMID: 37906439 DOI: 10.1002/anie.202313273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
The difunctionalization of alkenes-a process that installs two functional groups in a single operation and transforms chemical feedstocks into value-added products-is one of the most appealing synthetic methods in contemporary chemistry. However, the introduction of two distinct functional groups via two readily accessible nucleophiles remains a formidable challenge. Existing intermolecular alkene azidocyanation methods, which primarily focus on aryl alkenes and rely on stoichiometric chemical oxidants. We report herein an unprecedented electrochemical strategy for alkene azidocyanation that is compatible with both alkyl and aryl alkenes. This is achieved by harnessing the finely-tuned anodic electron transfer and the strategic selection of copper/ligand complexes. The reactions of aryl alkenes were rendered enantioselective by employing a chiral ligand. Crucially, the mild conditions and well-regulated electrochemical process assure exceptional tolerance for various functional groups and substrate compatibility with both terminal and internal alkyl alkenes.
Collapse
Affiliation(s)
- Yun-Tao Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Hai-Chao Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| |
Collapse
|
5
|
Harnedy J, Maashi HA, El Gehani AAMA, Burns M, Morrill LC. Deconstructive Functionalization of Unstrained Cycloalkanols via Electrochemically Generated Aromatic Radical Cations. Org Lett 2023; 25:1486-1490. [PMID: 36847269 PMCID: PMC10012273 DOI: 10.1021/acs.orglett.3c00219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Herein we report an electrochemical approach for the deconstructive functionalization of cycloalkanols, where various alcohols, carboxylic acids, and N-heterocycles are employed as nucleophiles. The method has been demonstrated across a broad range of cycloalkanol substrates, including various ring sizes and substituents, to access useful remotely functionalized ketone products (36 examples). The method was demonstrated on a gram scale via single-pass continuous flow, which exhibited increased productivity in relation to the batch process.
Collapse
Affiliation(s)
- James Harnedy
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Hussain A Maashi
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Albara A M A El Gehani
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Matthew Burns
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Louis C Morrill
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| |
Collapse
|
6
|
Zhang J, Liu C, Qiao Y, Wei M, Guan W, Mao Z, Qin H, Fang Z, Guo K. Intramolecular trapping of spiro radicals to produce unusual cyclization products from usual migration substrates. Chem Sci 2023; 14:2461-2466. [PMID: 36873849 PMCID: PMC9977401 DOI: 10.1039/d2sc05768a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
A conceptually new methodology to give unusual cyclization products from usual migration substrates was disclosed. The highly complex and structurally important and valuable spirocyclic compounds were produced through radical addition, intramolecular cyclization and ring opening instead of usual migration to the di-functionalization products of olefins. Furthermore, a plausible mechanism was proposed based on a series of mechanistic studies including radical trapping, radical clock, verification experiments of intermediates, isotope labeling and KIE experiments.
Collapse
Affiliation(s)
- Jingming Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 China
| | - Chengkou Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 China
| | - Yaqi Qiao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 China
| | - Minghui Wei
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 China
| | - Wenjing Guan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 China
| | - Ziren Mao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 China
| | - Hong Qin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 China .,State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University Nanjing 211816 China
| |
Collapse
|
7
|
Reshuffle Bonds by Ball Milling: A Mechanochemical Protocol for Charge-Accelerated Aza-Claisen Rearrangements. Molecules 2023; 28:molecules28020807. [PMID: 36677865 PMCID: PMC9860570 DOI: 10.3390/molecules28020807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/02/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023] Open
Abstract
This study presents the development of a mechanochemical protocol for a charge-accelerated aza-Claisen rearrangement. The protocol waives the use of commonly applied transition metals, ligands, or pyrophoric Lewis acids, e.g., AlMe3. Based on (heterocyclic) tertiary allylamines and acyl chlorides, the desired tertiary amides were prepared in yields ranging from 17% to 84%. Moreover, the same protocol was applied for a Belluš-Claisen-type rearrangement resulting in the synthesis of a 9-membered lactam without further optimization.
Collapse
|