1
|
Wei Q, Liu J, Wu L, Chen F, Ye Y, Zhang S, Zhu Y, Chen Y, You M, Liao Q, Lin M, Chen H. Multiple Electron Transfer in Semiconductive Ternary D-D'-A Metal-Organic Framework for Enhanced X-Ray Detection and Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405932. [PMID: 39171771 DOI: 10.1002/smll.202405932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/09/2024] [Indexed: 08/23/2024]
Abstract
Semiconductive metal-organic frameworks (MOFs) with donor-acceptor (D-A) characteristics have garnered attractive attention due to their capacity for separating and transferring photogenerated charges, making them promising candidates for high-performance X-ray detectors. However, the low charge transfer efficiency between the metal nodes and organic ligands limits the X-ray-to-electricity conversion efficiency of these materials. Herein, an additional photoactive donor (D') is introduced by incorporating a heavy atom-containing polyoxometalate (POM) [α-SiW12O40]4- into a binary {[Ni·bcbp·(H2O)2]·(H2O)4·Cl}n (Ni-bcbp, bcbp: H2bcbp·2Cl = 1,1'-bis(4-carboxyphenyl)(4,4'-bipyridinium) dichloride) MOF, resulting in a semiconductive ternary D-D'-A framework {[Ni2(bcbp)2·(H2O)4·(DMA)]·(SiW12O40)}n (SiW@Ni-bcbp, DMA: dimethylacetamide). The obtained material features an unprecedented porous 8-connected bcu-net structure that accommodates nanoscale [α-SiW12O40]4- counterions, displaying uncommon optoelectronic responses. In contrast to binary Ni-bcbp, the SiW@Ni-bcbp framework exhibits distinctive photochromism and robust X-ray responsiveness, which can be attributed to the synergistic effects of the electron reservoir and multiple photoinduced electron transfer originating from the POMs. As a result, the X-ray detector based on SiW@Ni-bcbp demonstrates a sensitivity of 5741.6 µC Gyair -1 cm-2 with a low detection limit of 0.49 µGyair s-1. Moreover, the devices demonstrated the capability of producing clearness X-ray images, providing a feasible and stable solution for constructing high-performance direct X-ray detectors.
Collapse
Affiliation(s)
- Qingsong Wei
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Jingyan Liu
- College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Liang Wu
- College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Fuhai Chen
- College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yuanji Ye
- College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Shuquan Zhang
- College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yanan Zhu
- Department of Materials Science, Shenzhen MSU-BIT University, Shenzhen, 518172, P. R. China
| | - Yong Chen
- College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Minghua You
- College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, 350118, P. R. China
| | - Qing Liao
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Meijin Lin
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
- College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Hongming Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
2
|
Zhu R, Xie L, Zhang Y, Liu L, Jiang Y, Pang H. Hf-Doped CoP Hollow Nanocubes as High-Performance Electrocatalyst for Oxygen Evolution Reaction. Inorg Chem 2024; 63:13093-13099. [PMID: 38953699 DOI: 10.1021/acs.inorgchem.4c02212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Designing and synthesizing hollow frame structures with unique three-dimensional open structures in electrocatalysis remain a challenge. Etching is an effective method to synthesize metal-organic frameworks (MOFs) with a hollow structure and rich function. Herein, we report the design and synthesis of Hf-doped CoP hollow nanocubes by selective etching and ion exchange. Different from the traditional etching method, we used acid xylenol orange solution to etch typically the (211) crystal face of ZIF-67, obtaining the unique bell-like structure, named XO-ZIF-67. Subsequently, Hf-doped CoP hollow nanocubes were formed by Hf4+ doping and simple phosphating treatment. Electrochemical tests showed that the overpotential of the obtained catalyst is only 291 mV at the current density of 10 mA cm-2 when applied in catalyzing the oxygen evolution reaction (OER). Furthermore, the catalyst shows excellent stability when running in 1 M KOH solution for 25 h.
Collapse
Affiliation(s)
- Rongmei Zhu
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China
| | - Liru Xie
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China
| | - Yi Zhang
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China
| | - Limei Liu
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China
| | - Yuxuan Jiang
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China
| |
Collapse
|
3
|
Lin X, Zhou P, Gao Y, Li T, Chen X, Li H, Jiang R, Chen Z, Zheng H. Implementation of Thermal-Triggered Binary-Ternary Switchable Memory Performance in Zn/polysulfide/organic Complex-Based Memorizers by Finely Modulating the S 62- Relaxation. Inorg Chem 2024; 63:775-783. [PMID: 38134353 DOI: 10.1021/acs.inorgchem.3c03787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Polysulfide-based multilevel memorizers are promising as novel memorizers, in which the occurrence of Sn2- relaxation is key for their multilevel memory. However, the effects of crystal packing and the side group of organic ligands on Sn2- relaxation are still ambiguous. In this work, ionic [Zn(S6)2·Zn2(Bipy)2SO4 (1), Zn(S6)2·Zn(Pmbipy)3 (2)] and neutral [ZnS6(Ombipy) (3), ZnS6(Phen)2 (4)] Zn/polysulfide/organic complexes with different packing modes and structures of organic ligands have been synthesized and were fabricated as memory devices. In both ionic and neutral Zn complexes, the S62- relaxation will be blocked by steric hindrances due to the packing of counter-cations and hydrogen-bond restrictions. Consequently, only the binary memory performances can be seen in FTO/1/Ag, FTO/2/Ag, and FTO/4/Ag, which originate from the more condensed packing of conjugated ligands upon electrical stimulus. Interestingly, FTO/3/Ag illustrates the unique thermally triggered reversible binary-ternary switchable memory performance. In detail, after introducing a methyl group on the 6'-position of bipyridine in ZnS6(Ombipy) (3), the ring-to-chain relaxation of S62- anions at room temperature will be inhibited, but it can happen at a higher temperature of 120 °C, which has been verified by elongated S-S lengths and the strengthened C-H···S hydrogen bond upon heating. The rules drawn in this work will provide a useful guide for the design of stimulus-responsive memorizers that can be applied in special industries such as automobile, oil, and gas industries.
Collapse
Affiliation(s)
- Xiaoli Lin
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Panke Zhou
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yiqun Gao
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Tao Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Xiong Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Haohong Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Rong Jiang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zhirong Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Huidong Zheng
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
4
|
Chen S, Ju Y, Yang Y, Xiang F, Yao Z, Zhang H, Li Y, Zhang Y, Xiang S, Chen B, Zhang Z. Multistate structures in a hydrogen-bonded polycatenation non-covalent organic framework with diverse resistive switching behaviors. Nat Commun 2024; 15:298. [PMID: 38182560 PMCID: PMC10770064 DOI: 10.1038/s41467-023-44214-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024] Open
Abstract
The inherent structural flexibility and reversibility of non-covalent organic frameworks have enabled them to exhibit switchable multistate structures under external stimuli, providing great potential in the field of resistive switching (RS), but not well explored yet. Herein, we report the 0D+1D hydrogen-bonded polycatenation non-covalent organic framework (HOF-FJU-52), exhibiting diverse and reversible RS behaviors with the high performance. Triggered by the external stimulus of electrical field E at room temperature, HOF-FJU-52 has excellent resistive random-access memory (RRAM) behaviors, comparable to the state-of-the-art materials. When cooling down below 200 K, it was transferred to write-once-read-many-times memory (WORM) behaviors. The two memory behaviors exhibit reversibility on a single crystal device through the temperature changes. The RS mechanism of this non-covalent organic framework has been deciphered at the atomic level by the detailed single-crystal X-ray diffraction analyses, demonstrating that the structural dual-flexibility both in the asymmetric hydrogen bonded dimers within the 0D loops and in the infinite π-π stacking column between the loops and chains contribute to reversible structure transformations between multi-states and thus to its dual RS behaviors.
Collapse
Affiliation(s)
- Shimin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian, China
| | - Yan Ju
- Fujian Provincial Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian, China
| | - Yisi Yang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian, China
| | - Fahui Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian, China
| | - Zizhu Yao
- Fujian Provincial Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian, China
| | - Hao Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian, China
| | - Yunbin Li
- Fujian Provincial Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian, China
| | - Yongfan Zhang
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian, China
| | - Banglin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian, China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian, China.
| |
Collapse
|
5
|
Liu JY, Zhang XH, Fang H, Zhang SQ, Chen Y, Liao Q, Chen HM, Chen HP, Lin MJ. Novel Semiconductive Ternary Hybrid Heterostructures for Artificial Optoelectronic Synapses. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302197. [PMID: 37403302 DOI: 10.1002/smll.202302197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/12/2023] [Indexed: 07/06/2023]
Abstract
Synaptic devices that mimic biological synapses are considered as promising candidates for brain-inspired devices, offering the functionalities in neuromorphic computing. However, modulation of emerging optoelectronic synaptic devices has rarely been reported. Herein, a semiconductive ternary hybrid heterostructure is prepared with a D-D'-A configuration by introducing polyoxometalate (POM) as an additional electroactive donor (D') into a metalloviologen-based D-A framework. The obtained material features an unprecedented porous 8-connected bcu-net that accommodates nanoscale [α-SiW12 O40 ]4- counterions, displaying uncommon optoelectronic responses. Besides, the fabricated synaptic device based on this material can achieve dual-modulation of synaptic plasticity due to the synergetic effect of electron reservoir POM and photoinduced electron transfer. And it can successfully simulate learning and memory processes similar to those in biological systems. The result provides a facile and effective strategy to customize multi-modality artificial synapses in the field of crystal engineering, which opens a new direction for developing high-performance neuromorphic devices.
Collapse
Affiliation(s)
- Jing-Yan Liu
- Key Laboratory of Molecule Synthesis and Function Discovery, and Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xiang-Hong Zhang
- Institure of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, P. R. China
| | - Hua Fang
- Key Laboratory of Molecule Synthesis and Function Discovery, and Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Shu-Quan Zhang
- College of Zhicheng, Fuzhou University, Fuzhou, 350002, P. R. China
| | - Yong Chen
- Key Laboratory of Molecule Synthesis and Function Discovery, and Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Qing Liao
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Hong-Ming Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Hui-Peng Chen
- Institure of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350100, P. R. China
| | - Mei-Jin Lin
- Key Laboratory of Molecule Synthesis and Function Discovery, and Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|