1
|
Feng P, Zhou SH, Li BX, Zhang JX, Ran MY, Wu XT, Lin H, Zhu QL. Realizing Excellent Infrared Nonlinear Optical Performance in Eu-Based Chalcogenides via Rational Cross Substitution Strategy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52682-52691. [PMID: 39307970 DOI: 10.1021/acsami.4c11949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
In recent years, rare-earth-based chalcogenides have gained attention promising materials in the field of infrared nonlinear optical (IR-NLO) applications owing to their exceptional physicochemical properties. However, they frequently encounter challenges such as adverse two-photon absorption and low laser-induced damage thresholds (LIDTs) caused by narrow optical band gaps (Eg), which limit their practical utility. In this study, we started with the centrosymmetric (CS) parent compound EuGa2S4 to develop two new noncentrosymmetric (NCS) Eu-based chalcogenides, namely, EuZnSiS4 and EuCdSiS4, employing a rational cross-substitution strategy. Despite having identical stoichiometry, both compounds crystallize in distinct NCS orthorhombic space groups [Fdd2 (no. 43) vs Ama2 (no. 40)], as confirmed by single-crystal structure analysis. Their crystal structures feature highly distorted tetrahedral motifs interconnected via corner-sharing, forming unique two-dimensional layers that host Eu2+ cations. Furthermore, both compounds exhibit robust phase-matching second-harmonic generation (SHG) intensities of 1.5 × AgGaS2 for EuZnSiS4 and 2.8 × AgGaS2 for EuCdSiS4 under 2050 nm excitation. They also demonstrate high LIDTs (approximately 14-17 × AgGaS2), wide Eg (>2.5 eV), and transparency windows extending up to 18.2 μm. Particularly noteworthy, EuCdSiS4 stands out as a pioneering example in the Eu-based IR-NLO system for successfully combining a broad Eg (>2.56 eV, equivalent to that of AgGaS2) with a significant SHG effect (>1.0 × AgGaS2) simultaneously. Structural analyses and theoretical insights underscore that the reasonable combination of asymmetric functional units plays a pivotal role in driving the CS-to-NCS structural transformation and enhancing the NLO and linear optical properties of these Eu-based chalcogenides. This study presents a promising chemical pathway for advancing rare-earth-based functional materials and suggests exciting opportunities for their future applications in IR-NLO technologies.
Collapse
Affiliation(s)
- Ping Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
- College of Chemistry, Fuzhou University, Fuzhou 350002, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China
| | - Sheng-Hua Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Resource Environment & Clean Energy Laboratory, School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Jiangsu 213001, China
| | - Bing-Xuan Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| | - Jia-Xiang Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mao-Yin Ran
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| | - Xin-Tao Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| | - Hua Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| | - Qi-Long Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| |
Collapse
|
2
|
Wang G, Li C, Lee MH, Yao J. Sr 2HgGe 2OS 6: A Hg-Based Oxychalcogenide Infrared Nonlinear Optical Material Exhibiting Favorable Balance between a Large Band Gap and Strong Second Harmonic Generation Response. Inorg Chem 2024; 63:10288-10295. [PMID: 38780405 DOI: 10.1021/acs.inorgchem.4c00959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Currently, oxychalcogenides with mixed-anion groups that integrate the property advantages of oxides (wide optical band gap) and chalcogenides [strong second harmonic generation (SHG) response] through chemical substitution engineering have attracted widespread interest and are considered to be important candidates for infrared (IR) nonlinear optical (NLO) materials. Herein, the first Hg-based oxychalcogenide Sr2HgGe2OS6 with mixed anion [GeOS3] units has been successfully synthesized through a spontaneous crystallization method, which exhibits a favorable balance between the strong SHG response (0.7 × AgGaS2) and large optical band gap (2.9 eV). In addition, Sr2HgGe2OS6 shows high laser-induced damage threshold (LIDT, 2.1 × AgGaS2) as well as phase-matching (PM) performance. Theoretical calculations indicate that the Sr2HgGe2OS6 encompasses large birefringence of 0.128@2090 nm (3.3 × AgGaS2) and its SHG density mainly comes from [HgS4] tetrahedra and [GeOS3] units. This work not only demonstrates that Sr2HgGe2OS6 is a promising IR NLO material but also provides new ideas for the exploration of Hg-based oxychalcogenide IR NLO materials.
Collapse
Affiliation(s)
- Guili Wang
- Beijing Center for Crystal Research and Development, Key Lab of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chunxiao Li
- Beijing Center for Crystal Research and Development, Key Lab of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Ming-Hsien Lee
- Department of Physics, Tamkang University, New Taipei 25137, Taiwan
| | - Jiyong Yao
- Beijing Center for Crystal Research and Development, Key Lab of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
3
|
Tang RL, Xu W, Lian X, Wei YQ, Lv YL, Liu W, Guo SP. Na 2CeF 6: A Highly Laser Damage-Tolerant Double Perovskite Type Ce(IV) Fluoride Exhibiting Strong Second-Harmonic Generation Effect. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308348. [PMID: 38050941 DOI: 10.1002/smll.202308348] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/19/2023] [Indexed: 12/07/2023]
Abstract
Perovskite structure compounds are significant candidates for designing new optical function materials due to their structural variability. Here, an inorganic tetravalent cerium fluoride, Na2CeF6, is derived from the perovskite structure through double-site cation co-substitution. Na2CeF6 crystalizes in the non-centrosymmetric space groupP 6 ¯ 2 m ${P}^{\bar{6}}2m$ . Edge-sharing connected NaF9 and CeF9 polyhedra build the whole 3D structure of Na2CeF6. Importantly, it represents the first Ce(IV) fluoride nonlinear optical (NLO) crystal and can produce a strong and phase-matchable second-harmonic generation (SHG) effect of ≈2.1 times that of KH2PO4 (KDP), making it the strongest among non-lone pair electron metal fluoride system. Further, it exhibits a high laser-induced damage threshold (LIDT) of 74.65-76.25 MW cm-2, which is over 20 times that of AgGaS2. It also exhibits a wide transparent region (0.5-14.3 µm). This work provides a facile route for exploring high-performance halide NLO materials.
Collapse
Affiliation(s)
- Ru-Ling Tang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Wei Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Xin Lian
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Yue-Qi Wei
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Yi-Lei Lv
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Wenlong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Sheng-Ping Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| |
Collapse
|
4
|
Fan XX, Yang M, Yao WD, Zhou W, Jiang T, Liu W, Guo SP. Pentanary Oxythiogermanates Ba 3MGe 3O 2S 8 (M = Ca, Zn) Featuring [Ge 3O 2S 8] 8- Trimers and {[MGe 3O 2S 8] 6-} ∞ Chains: Structural Chemistry and Physical Properties. Inorg Chem 2024; 63:7549-7554. [PMID: 38607347 DOI: 10.1021/acs.inorgchem.3c04336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Oxychalcogenides are increasingly attracting wide attention because they contain multiple anions that may combine the advantages of oxides and chalcogenides. In this work, two new pentanary oxythiogermanates, Ba3MGe3O2S8 [M = Ca (1), Zn (2)], were synthesized by a high-temperature solid-state reaction. They crystallize in the orthorhombic space group Pnma, and their structures contain isolated [Ge3O2S8]8- units constructed by one [GeO2S2] and two [GeOS3] tetrahedra that link with M2+ ions to build the {[MGe3O2S8]6-}∞ chain, representing a new type of oxythiogermanate. Notably, a [ZnS5] square pyramid exists in 2. Their structural chemistry and relationship with relevant structures are analyzed. 1 and 2 exhibit wide band gaps of 3.93 and 2.63 eV, birefringences of 0.100 and 0.089 at 2100 nm, respectively, and also obvious photocurrent responses. This work may be extended to a family of AE3MIIMIV3O2Q8 (AE = alkali-earth metal; MII = Ca, Zn, Cd, Hg; MIV = Si, Ge, Sn; Q = S, Se), and further systematic survey on them can be performed to enrich the study of multifunctional oxychalcogenides.
Collapse
Affiliation(s)
- Xin-Xin Fan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Mei Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Wen-Dong Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Wenfeng Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Tengfei Jiang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Wenlong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Sheng-Ping Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| |
Collapse
|
5
|
Feng P, Zhang JX, Ran MY, Wu XT, Lin H, Zhu QL. Rare-earth-based chalcogenides and their derivatives: an encouraging IR nonlinear optical material candidate. Chem Sci 2024; 15:5869-5896. [PMID: 38665521 PMCID: PMC11041271 DOI: 10.1039/d4sc00697f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/03/2024] [Indexed: 04/28/2024] Open
Abstract
With the continuous development of laser technology and the increasing demand for lasers of different frequencies in the infrared (IR) spectrum, research on infrared nonlinear optical (NLO) crystals has garnered growing attention. Currently, the three main commercially available types of borate materials each have their drawbacks, which limit their applications in various areas. Rare-earth (RE)-based chalcogenide compounds, characterized by the unique f-electron configuration, strong positive charges, and high coordination numbers of RE cations, often exhibit distinctive optical responses. In the field of IR-NLO crystals, they have a research history spanning several decades, with increasing interest. However, there is currently no comprehensive review summarizing and analyzing these promising compounds. In this review, we categorize 85 representative examples out of more than 400 non-centrosymmetric (NCS) compounds into four classes based on the connection of different asymmetric building motifs: (1) RE-based chalcogenides containing tetrahedral motifs; (2) RE-based chalcogenides containing lone-pair-electron motifs; (3) RE-based chalcogenides containing [BS3] and [P2Q6] motifs; and (4) RE-based chalcohalides and oxychalcogenides. We provide detailed discussions on their synthesis methods, structures, optical properties, and structure-performance relationships. Finally, we present several favorable suggestions to further explore RE-based chalcogenide compounds. These suggestions aim to approach these compounds from a new perspective in the field of structural chemistry and potentially uncover hidden treasures within the extensive accumulation of previous research.
Collapse
Affiliation(s)
- Ping Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fujian 350108 China
- College of Chemistry, Fuzhou University Fuzhou 350002 China
- Fujian College, University of Chinese Academy of Sciences Fuzhou 350002 China
| | - Jia-Xiang Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fujian 350108 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Mao-Yin Ran
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fujian 350108 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xin-Tao Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fujian 350108 China
- Fujian College, University of Chinese Academy of Sciences Fuzhou 350002 China
| | - Hua Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fujian 350108 China
- Fujian College, University of Chinese Academy of Sciences Fuzhou 350002 China
| | - Qi-Long Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fujian 350108 China
- Fujian College, University of Chinese Academy of Sciences Fuzhou 350002 China
- Fujian Key Laboratory of Rare-earth Functional Materials, Fujian Shanhai Collaborative Innovation Center of Rare-earth Functional Materials Longyan 366300 China
| |
Collapse
|
6
|
Zhou W, Guo SP. Rational Design of Novel Promising Infrared Nonlinear Optical Materials: Structural Chemistry and Balanced Performances. Acc Chem Res 2024. [PMID: 38301117 DOI: 10.1021/acs.accounts.3c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
ConspectusSecond-order nonlinear optical (NLO) materials are currently a hot topic in modern solid-state chemistry and optics because they can produce coherent light by frequency conversion. Noncentrosymmetric (NCS) structure is not only the prerequisite for NLO materials but also a challengeable issue because materials tend to be centrosymmetric (CS) in terms of thermodynamical stability. Among NLO materials, an excellent infrared (IR) candidate should simultaneously meet several strict key conditions including a large NLO coefficient, high laser-induced damage threshold (LIDT), phase-matchable (PM) behavior, and so on. Achieving a balance between the large NLO effect and high LIDT is difficult, as they have contradictory requirements for chemical bonds. Considering the urgent need of the high-power IR laser market and the drawbacks of the available ones, exploring new high-performance IR NLO crystals is necessary while challenging. In this Account, we first briefly introduce the status and advancement of IR NLO crystals and emphasize the criteria of an excellent candidate. Then, we will introduce five simple methods developed by us to discover practical NLO candidates through understanding of the chemical composition-structure-NLO performance relationship. (1) A rarely investigated system with simple chemical compositions as new-type NLO crystals, namely, adducts containing S8 molecules, are developed. Combining a chairlike S8 unit with other units through van der Waals forces has successfully obtained several high-performance NLO adducts. (2) The main trend in exploring new NLO crystals is that the chemical composition is more and more diversified and the structure is more and more complex, and expensive and chemically active alkaline and alkaline earth metals are usually introduced as counter cations. In contrast, the research on systems with simple chemical compositions, simple structures, and low costs has been continuously ignored. The binary M2Q3 (M = Ga, In; Q = S, Se) family with rich acentric modifications has been systematically investigated, and they all exhibit strong SHG effects and high LIDTs. (3) We first proposed the concept of inducing CS structures transformed to NCS ones by partial cation substitution to design novel NLO crystals. Considering the huge number of CS structures in the database compared to the number of NCS structures, it is an attractive method to apply CS structures as the parents to obtain potential NLO materials via partial-substitution-induced symmetry breaking. A series of chalcogenides with high NLO performances have been successfully obtained by us in this way. (4) We investigated the first NLO-active rare earth (RE) chalcophosphates and developed this family systematically, and they demonstrate wonderful comprehensive NLO properties. (5) We created a novel mixed-anion system for NLO applications, namely, chalcogenide borates. Usually, mixed-anion compounds can engender a synergistic effect to obtain desired IR NLO properties. Our recent progress on this system suggests that chalcogenide borates are potential candidates for IR NLO applications, although the study is still in its infancy. Finally, we state the current problems of IR NLO materials and give some perspectives for their future development.
Collapse
Affiliation(s)
- Wenfeng Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Sheng-Ping Guo
- Yunnan Key Laboratory of Electromagnetic Materials and Devices, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| |
Collapse
|
7
|
Zhang N, Huang X, Yao WD, Chen Y, Pan ZR, Li B, Liu W, Guo SP. Eu 2MGe 2OS 6 (M = Mn, Fe, Co): Three Melilite-Type Rare-Earth Oxythiogermanates Exhibiting Balanced Nonlinear-Optical Behaviors. Inorg Chem 2023; 62:16299-16303. [PMID: 37768782 DOI: 10.1021/acs.inorgchem.3c02950] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Metal oxychalcogenides as candidates for novel mid-infrared nonlinear-optical materials have attracted great interest due to the distinctive advantages of oxides and chalcogenides in this field. Herein, the first melilite-type rare-earth (RE) oxythiogermanates Eu2MGe2OS6 [M = Mn (1), Fe (2), Co (3)] are obtained by combining RE metals with localized f electrons, magnetic transition metals with delocalized d electrons, and the highly distorted mixed anionic group [GeOS3] into one structure. They belong to the tetragonal P4̅21m space group, and highly distorted [EuOS7] bicapped trigonal prisms bridge adjacent {[MGe2OS6]4-}∞ layers to build the three-dimensional network. Their optical band gaps are determined as 2.40, 2.11 and 2.14 eV, and they show moderate second-harmonic-generation (SHG) responses (0.3, 0.3 and 0.5 × AGS) and large laser-induced damage thresholds (2.77-8.31 × AGS). Theoretical calculation results indicate that the synergistic effect of [EuOS7] and [MS4] units acts on the SHG effect. This work enriches the crystal chemistry of melilite-structure materials.
Collapse
Affiliation(s)
- Nan Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Xiao Huang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Wen-Dong Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Yao Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Zheng-Rui Pan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Bingxuan Li
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Wenlong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Sheng-Ping Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| |
Collapse
|