1
|
Li WL, Shuai Q, Yu J. Recent Advances of Carbon Capture in Metal-Organic Frameworks: A Comprehensive Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402783. [PMID: 39115100 DOI: 10.1002/smll.202402783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/03/2024] [Indexed: 11/08/2024]
Abstract
The excessive emission of greenhouse gases, which leads to global warming and alarms the world, has triggered a global campaign for carbon neutrality. Carbon capture and sequestration (CCS) technology has aroused wide research interest as a versatile emission mitigation technology. Metal-organic frameworks (MOFs), as a new class of high-performance adsorbents, hold great potential for CO2 capture from large point sources and ambient air due to their ultra-high specific surface area as well as pore structure. In recent years, MOFs have made great progress in the field of CO2 capture and separation, and have published a number of important results, which have greatly promoted the development of MOF materials for practical carbon capture applications. This review summarizes the most recent advanced research on MOF materials for carbon capture in various application scenarios over the past six years. The strategies for enhancing CO2 selective adsorption and separation of MOFs are described in detail, along with the development of MOF-based composites. Moreover, this review also systematically summarizes the highly concerned issues of MOF materials in practical applications of carbon capture. Finally, future research on CO2 capture by MOF materials is prospected.
Collapse
Affiliation(s)
- Wen-Liang Li
- College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Qi Shuai
- College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Jiamei Yu
- College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
2
|
Mandel RM, Lotlikar PS, Keasler KT, Chen EY, Wilson JJ, Milner PJ. Gas Delivery Relevant to Human Health using Porous Materials. Chemistry 2024; 30:e202402163. [PMID: 38949770 PMCID: PMC11443428 DOI: 10.1002/chem.202402163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/02/2024]
Abstract
Gases are essential for various applications relevant to human health, including in medicine, biomedical imaging, and pharmaceutical synthesis. However, gases are significantly more challenging to safely handle than liquids and solids. Herein, we review the use of porous materials, such as metal-organic frameworks (MOFs), zeolites, and silicas, to adsorb medicinally relevant gases and facilitate their handling as solids. Specific topics include the use of MOFs and zeolites to deliver H2S for therapeutic applications, 129Xe for magnetic resonance imaging, O2 for the treatment of cancer and hypoxia, and various gases for use in organic synthesis. This Perspective aims to bring together the organic, inorganic, medicinal, and materials chemistry communities to inspire the design of next-generation porous materials for the storage and delivery of medicinally relevant gases.
Collapse
Affiliation(s)
- Ruth M. Mandel
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Piyusha S. Lotlikar
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, United States
| | - Kaitlyn T. Keasler
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Elena Y. Chen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, United States
| | - Phillip J. Milner
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| |
Collapse
|
3
|
Mandel RM, Lotlikar PS, Runčevski T, Lee JH, Woods JJ, Pitt TA, Wilson JJ, Milner PJ. Transdermal Hydrogen Sulfide Delivery Enabled by Open-Metal-Site Metal-Organic Frameworks. J Am Chem Soc 2024; 146:18927-18937. [PMID: 38968420 PMCID: PMC11323067 DOI: 10.1021/jacs.4c00674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Hydrogen sulfide (H2S) is an endogenously produced gasotransmitter involved in many physiological processes that are integral to proper cellular functioning. Due to its profound anti-inflammatory and antioxidant properties, H2S plays important roles in preventing inflammatory skin disorders and improving wound healing. Transdermal H2S delivery is a therapeutically viable option for the management of such disorders. However, current small-molecule H2S donors are not optimally suited for transdermal delivery and typically generate electrophilic byproducts that may lead to undesired toxicity. Here, we demonstrate that H2S release from metal-organic frameworks (MOFs) bearing coordinatively unsaturated metal centers is a promising alternative for controlled transdermal delivery of H2S. Gas sorption measurements and powder X-ray diffraction (PXRD) studies of 11 MOFs support that the Mg-based framework Mg2(dobdc) (dobdc4- = 2,5-dioxidobenzene-1,4-dicarboxylate) is uniquely well-suited for transdermal H2S delivery due to its strong yet reversible binding of H2S, high capacity (14.7 mmol/g at 1 bar and 25 °C), and lack of toxicity. In addition, Rietveld refinement of synchrotron PXRD data from H2S-dosed Mg2(dobdc) supports that the high H2S capacity of this framework arises due to the presence of three distinct binding sites. Last, we demonstrate that transdermal delivery of H2S from Mg2(dobdc) is sustained over a 24 h period through porcine skin. Not only is this significantly longer than sodium sulfide but this represents the first example of controlled transdermal delivery of pure H2S gas. Overall, H2S-loaded Mg2(dobdc) is an easily accessible, solid-state source of H2S, enabling safe storage and transdermal delivery of this therapeutically relevant gas.
Collapse
Affiliation(s)
- Ruth M. Mandel
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, United States
| | - Piyusha S. Lotlikar
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, United States
| | - Tomče Runčevski
- Department of Chemistry, Southern Methodist University, Dallas, TX 75275, United States
| | - Jung-Hoon Lee
- Computational Science Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Joshua J. Woods
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, United States
- Robert F. Smith School for Chemical and Biomedical Engineering, Cornell University, Ithaca, NY 14850, United States
| | - Tristan A. Pitt
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, United States
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, United States
| | - Phillip J. Milner
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, United States
| |
Collapse
|
4
|
Tegudeer Z, Moon J, Wright J, Das M, Rubasinghege G, Xu W, Gao WY. Generic and facile mechanochemical access to versatile lattice-confined Pd(ii)-based heterometallic sites. Chem Sci 2024; 15:10126-10134. [PMID: 38966377 PMCID: PMC11220583 DOI: 10.1039/d4sc01918k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/23/2024] [Indexed: 07/06/2024] Open
Abstract
Metal-organic frameworks (MOFs) show remarkable potential in a broad array of applications given their physical and chemical versatility. Classical synthesis of MOFs is performed using solution chemistry at elevated temperatures to achieve reversible metal-ligand bond formation. These harsh conditions may not be suitable for chemical species sensitive to high temperature or prone to deleterious reactions with solvents. For instance, Pd(ii) is susceptible to reduction under solvothermal conditions and is not a common metal node of MOFs. We report a generic and facile mechanochemical strategy that directly incorporates a series of Pd(ii)-based heterobimetallic clusters into MOFs as metal nodes without Pd(ii) being reduced to Pd(0). Mechanochemistry features advantages of short reaction time, minimum solvent, high reaction yield, and high degree of synthetic control. Catalytic performances of lattice-confined heterobimetallic sites are examined for nitrene transfer reactions and we demonstrate that the chemoselectivity for allylic amination versus olefin aziridination is readily tuned by the identity of the first-row metal ion in Pd(ii)-based heterobimetallic clusters.
Collapse
Affiliation(s)
| | - Jisue Moon
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge Tennessee 37831 USA
| | - Joshua Wright
- Department of Physics, Illinois Institute of Technology Chicago Illinois 60616 USA
| | - Milton Das
- Department of Chemistry, New Mexico Institute of Mining and Technology Socorro New Mexico 87801 USA
| | - Gayan Rubasinghege
- Department of Chemistry, New Mexico Institute of Mining and Technology Socorro New Mexico 87801 USA
| | - Wenqian Xu
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory Lemont Illinois 60439 USA
| | - Wen-Yang Gao
- Department of Chemistry and Biochemistry, Ohio University Athens Ohio 45701 USA
| |
Collapse
|
5
|
Halder A, Bain DC, Pitt TA, Shi Z, Oktawiec J, Lee JH, Tsangari S, Ng M, Fuentes-Rivera JJ, Forse AC, Runčevski T, Muller DA, Musser AJ, Milner PJ. Kinetic Trapping of Photoluminescent Frameworks During High-Concentration Synthesis of Non-Emissive Metal-Organic Frameworks. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:10086-10098. [PMID: 38225948 PMCID: PMC10788154 DOI: 10.1021/acs.chemmater.3c02121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Metal-organic frameworks (MOFs) are porous, crystalline materials constructed from organic linkers and inorganic nodes with potential utility in gas separations, drug delivery, sensing, and catalysis. Small variations in MOF synthesis conditions can lead to a range of accessible frameworks with divergent chemical or photophysical properties. New methods to controllably access phases with tailored properties would broaden the scope of MOFs that can be reliably prepared for specific applications. Herein, we demonstrate that simply increasing the reaction concentration during the solvothermal synthesis of M2(dobdc) (M = Mg, Mn, Ni; dobdc4- = 2,5-dioxido-1,4-benzenedicarboxylate) MOFs unexpectedly leads to trapping of a new framework termed CORN-MOF-1 (CORN = Cornell University) instead. In-depth spectroscopic, crystallographic, and computational studies support that CORN-MOF-1 has a similar structure to M2(dobdc) but with partially protonated linkers and charge-balancing or coordinated formate groups in the pores. The resultant variation in linker spacings causes CORN-MOF-1 (Mg) to be strongly photoluminescent in the solid state, whereas H4dobdc and Mg2(dobdc) are weakly emissive due to excimer formation. In-depth photophysical studies suggest that CORN-MOF-1 (Mg) is the first MOF based on the H2dobdc2- linker that likely does not emit via an excited state intramolecular proton transfer (ESIPT) pathway. In addition, CORN-MOF-1 variants can be converted into high-quality samples of the thermodynamic M2(dobdc) phases by heating in N,N-dimethylformamide (DMF). Overall, our findings support that high-concentration synthesis provides a straightforward method to identify new MOFs with properties distinct from known materials and to produce highly porous samples of MOFs, paving the way for the discovery and gram-scale synthesis of framework materials.
Collapse
Affiliation(s)
- Arjun Halder
- Department of Chemistry and Chemical Biology Cornell University, Ithaca, NY, 14850, United States
| | - David C. Bain
- Department of Chemistry and Chemical Biology Cornell University, Ithaca, NY, 14850, United States
| | - Tristan A. Pitt
- Department of Chemistry and Chemical Biology Cornell University, Ithaca, NY, 14850, United States
| | - Zixiao Shi
- Department of Applied Engineering Physics, Cornell University, Ithaca, NY, 14850, United States
| | - Julia Oktawiec
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, United States
| | - Jung-Hoon Lee
- Computational Science Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Stavrini Tsangari
- Department of Chemistry and Chemical Biology Cornell University, Ithaca, NY, 14850, United States
| | - Marcus Ng
- Department of Chemistry and Chemical Biology Cornell University, Ithaca, NY, 14850, United States
| | - José J. Fuentes-Rivera
- Department of Chemistry and Chemical Biology Cornell University, Ithaca, NY, 14850, United States
| | - Alexander C. Forse
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom
| | - Tomče Runčevski
- Department of Chemistry, Southern Methodist University, Dallas, TX, 75275, United States
| | - David A. Muller
- Department of Applied Engineering Physics, Cornell University, Ithaca, NY, 14850, United States
| | - Andrew J. Musser
- Department of Chemistry and Chemical Biology Cornell University, Ithaca, NY, 14850, United States
| | - Phillip J. Milner
- Department of Chemistry and Chemical Biology Cornell University, Ithaca, NY, 14850, United States
| |
Collapse
|
6
|
Azbell TJ, Pitt TA, Jerozal RT, Mandel RM, Milner PJ. Simplifying the Synthesis of Metal-Organic Frameworks. ACCOUNTS OF MATERIALS RESEARCH 2023; 4:867-878. [PMID: 38226178 PMCID: PMC10788152 DOI: 10.1021/accountsmr.3c00121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Metal-organic frameworks (MOFs) are porous, crystalline materials constructed from organic linkers and inorganic nodes that have attracted widespread interest due to their permanent porosity and highly modular structures. However, the large volumes of organic solvents and additives, long reaction times, and specialized equipment typically required to synthesize MOFs hinder their widespread adoption in both academia and industry. Recently, our lab has developed several user-friendly methods for the gram-scale (1-100 g) preparation of MOFs. Herein, we summarize our progress in the development of high-concentration solvothermal, mechanochemical, and ionothermal syntheses of MOFs, as well as in minimizing the amount of modulators required to prepare highly crystalline Zr-MOFs. To begin, we detail our work elucidating key features of acid modulation in Zr-MOFs to improve upon current dilute solvothermal syntheses. Choosing an optimal modulator maximizes the crystallinity and porosity of Zr-MOFs while minimizing the quantity of modulator needed, reducing the waste associated with MOF synthesis. By evaluating a range of modulators, we identify the pKa, size, and structural similarity of the modulator to the linker as controlling factors in modulating ability. In the following section, we describe two high-concentration solvothermal methods for the synthesis of Zr-MOFs and demonstrate their generality among a range of frameworks. We also target the M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Cu, Zn, Cd; dobdc4- = 2,5-dioxido-1,4-benzenedicarboxylate) family of MOFs for high-concentration synthesis and introduce a two-step preparation of several variants that proceeds through a novel kinetic phase. The high-concentration methods we discuss produce MOFs on multi-gram scale with comparable properties to those prepared under traditional dilute solvothermal conditions. Next, to further curtail solvent waste and accelerate reaction times, we discuss the mechanochemical preparation of M2(dobdc) MOFs utilizing liquid amine additives in a planetary ball mill, which we also apply to the synthesis of two related salicylate frameworks. These samples exhibit comparable porosities to traditional dilute solvothermal samples but can be synthesized in just minutes, as opposed to days, and require under 1 mL of liquid additive to prepare ~0.5 g of material. In the following section, we discuss our efforts to avoid specialized equipment and eliminate solvent use entirely by employing ionothermal conditions to prepare a variety of azolate- and salicylate-based MOFs. Simply combining metal chloride (hydrate) salts with organic linkers at temperatures above the melting points of the salts affords high-quality framework materials. Further, ionothermal conditions enable the syntheses of two new Fe(III) M2(dobdc) derivatives that cannot be synthesized under normal solvothermal conditions. Last, as a demonstrative example, we discuss our efforts to synthesize 100 g of high-quality Mg2(dobdc) in a single batch using a high-concentration (1.0 M) hydrothermal synthesis. Our Account will be of significant interest to researchers aiming to prepare gram-scale quantities of MOFs for further study.
Collapse
Affiliation(s)
- Tyler J Azbell
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, United States
| | - Tristan A Pitt
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, United States
| | - Ronald T Jerozal
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, United States
| | - Ruth M Mandel
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, United States
| | - Phillip J Milner
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, United States
| |
Collapse
|
7
|
Ahmad BIZ, Keasler KT, Stacy EE, Meng S, Hicks TJ, Milner PJ. MOFganic Chemistry: Challenges and Opportunities for Metal-Organic Frameworks in Synthetic Organic Chemistry. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:4883-4896. [PMID: 38222037 PMCID: PMC10785605 DOI: 10.1021/acs.chemmater.3c00741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Metal-organic frameworks (MOFs) are porous, crystalline solids constructed from organic linkers and inorganic nodes that have been widely studied for applications in gas storage, chemical separations, and drug delivery. Owing to their highly modular structures and tunable pore environments, we propose that MOFs have significant untapped potential as catalysts and reagents relevant to the synthesis of next-generation therapeutics. Herein, we outline the properties of MOFs that make them promising for applications in synthetic organic chemistry, including new reactivity and selectivity, enhanced robustness, and user-friendly preparation. In addition, we outline the challenges facing the field and propose new directions to maximize the utility of MOFs for drug synthesis. This perspective aims to bring together the organic and MOF communities to develop new heterogeneous platforms capable of achieving synthetic transformations that cannot be replicated by homogeneous systems.
Collapse
Affiliation(s)
- Bayu I. Z. Ahmad
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Kaitlyn T. Keasler
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Emily E. Stacy
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Sijing Meng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Thomas J. Hicks
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Phillip J. Milner
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| |
Collapse
|