1
|
Ganai A, Sarkar P. Computational Exploration on Coupling Formic Acid Production with Propylene Synthesis via Catalytic Transfer Hydrogenation: The Role of CO2 beyond Reverse Water Gas Shift Reaction. J Org Chem 2024; 89:12010-12019. [PMID: 39133784 DOI: 10.1021/acs.joc.4c00727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
CO2-assisted propane dehydrogenation (CO2-ODHP) is emerging as an alternative route to the direct dehydrogenation of propane. Previous studies on CO2-ODHP have shown that the role of CO2 is to shift the reaction equilibrium toward the product side by consuming the produced H2 molecules via reverse water gas shift (RWGS) reaction. Since the ultimate fate of CO2 is to get reduced, we herein propose another pathway of CO2 reduction in the realm of CO2-ODHP─CO2 hydrogenation to formic acid (FA). With the objective of investigating the feasibility of this process, we, for the first time, carry out a computational investigation on coupling propane dehydrogenation with CO2 hydrogenation using a Ti-alkoxide-functionalized UiO-67 metal-organic framework. Analysis using the distortion/interaction model confirms that CO2 hydrogenation to FA is a preferred pathway over the RWGS reaction and hence can be realized in practice. Our study also highlights the importance of intersystem crossing, which provides an opportunity to access nonground state potential energy surfaces while undergoing chemical transformations. Again, subsequent addition of water molecules has shown to ease product desorption by 41 kcal/mol. Our study, therefore, hints at an unexplored role of CO2 beyond the RWGS reaction in oxidative propane dehydrogenation.
Collapse
Affiliation(s)
- Anjali Ganai
- Department of Chemistry, Visva-Bharati University, Santiniketan, Bolpur 731235, India
| | - Pranab Sarkar
- Department of Chemistry, Visva-Bharati University, Santiniketan, Bolpur 731235, India
| |
Collapse
|
2
|
Jan F, Zhi S, Sun X, Li B. Enhancing catalytic activity of Cr 2O 3 in CO 2-assisted propane dehydrogenation with effective dopant engineering: a DFT-based microkinetic simulation. Phys Chem Chem Phys 2024; 26:9708-9721. [PMID: 38470365 DOI: 10.1039/d3cp05548e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Using CO2 as a mild oxidizing agent in propane dehydrogenation (PDH) presents an attractive pathway for the generation of propene while maintaining high selectivity. Cr2O3 is one of the most important catalysts used for the CO2-assisted PDH process. In this study, the doping of Cr2O3 with single atoms such as Ge, Ir, Ni, Sn, Zn, and Zr was used for the PDH process. The introduction of dopants significantly modifies the electronic structure of pristine Cr2O3, leading to substantial alterations in its catalytic capabilities. The dehydrogenation reactions were explored both in the absence and presence of CO2. The addition of CO2 introduces two distinct pathways for PDH. On physisorbed CO2 surfaces, Ge and Ni-Cr2O3 enhance dehydrogenation. On the dissociated surface, the CO* and O* species actively participate in the reaction. All doped surfaces exhibit low energy barriers for dehydrogenation, except undoped Cr2O3 on dissociated CO2 surfaces. The Ni-Cr2O3 surface emerges as the most active surface for dehydrogenation of propane in all scenarios. Additionally, the catalytic surface is re-oxidized through H2 release, and doped surfaces facilitate coke removal via the reverse Boudouard reaction more efficiently than undoped Cr2O3. Microkinetics simulations identify the removal of the first H-atom as the rate-determining step. CO2 reduces the apparent activation energy, directly impacting C3H8 conversion and C3H6 formation. This study offers a decisive description of Cr2O3 modification for the CO2-assisted PDH process.
Collapse
Affiliation(s)
- Faheem Jan
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, Liaoning, China
| | - Shuaike Zhi
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, Liaoning, China
| | - XiaoYing Sun
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China.
| | - Bo Li
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China.
| |
Collapse
|
3
|
Jan F, Yang M, Zhou N, Sun X, Li B. Engineering the catalytic properties of CeO2 catalyst in HCl-assisted propane dehydrogenation by effective doping: A first-principles-based microkinetic simulation. Front Chem 2023; 11:1133865. [PMID: 36970413 PMCID: PMC10036589 DOI: 10.3389/fchem.2023.1133865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
HCl-assisted propane dehydrogenation (PDH) is an attractive route for propene production with good selectivity. In this study, the doping of CeO2 with different transition metals, including V, Mn, Fe, Co, Ni, Pd, Pt, and Cu, in the presence of HCl was investigated for PDH. The dopants have a pronounced effect on the electronic structure of pristine ceria that significantly alters the catalytic capabilities. The calculations indicate the spontaneous dissociation of HCl on all surfaces with a facile abstraction of the first hydrogen atom except on V- and Mn-doped surfaces. The lowest energy barrier of 0.50 and 0.51eV was found for Pd- and Ni-doped CeO2 surfaces. The surface oxygen is responsible for hydrogen abstraction, and its activity is described by the p-band center. Microkinetics simulation is performed on all doped surfaces. The increase in the turnover frequency (TOF) is directly linked with the partial pressure of propane. The adsorption energy of reactants aligned with the observed performance. The reaction follows first-order kinetics to C3H8. Furthermore, on all surfaces, the formation of C3H7 is found as the rate-determining step confirmed by the degree of rate control (DRC) analysis. This study provides a decisive description of catalyst modification for HCl-assisted PDH.
Collapse
Affiliation(s)
- Faheem Jan
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, Liaoning, China
| | - Min Yang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, Liaoning, China
| | - Nuodan Zhou
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, Liaoning, China
| | - XiaoYing Sun
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
- *Correspondence: Bo Li, ; XiaoYing Sun,
| | - Bo Li
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
- *Correspondence: Bo Li, ; XiaoYing Sun,
| |
Collapse
|
4
|
Zhai Z, Zhang B, Wang Y, Wang L, Liu S, Liu G. Revealing the promotion of carbonyl groups on vacancy stabilized Pt 4/nanocarbons for propane dehydrogenation. Phys Chem Chem Phys 2022; 24:23236-23244. [PMID: 36129362 DOI: 10.1039/d2cp03263e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanocarbons are promising supports for Pt clusters applied in propane dehydrogenation (PDH), owing to their large surface areas and tunable chemical properties. The vacancies and oxygen-containing groups (OCGs) in nanocarbons can enhance catalytic performance by tailoring the coordination environment of Pt clusters. Herein, 46 nanocarbons with coexisting vacancies and OCGs were designed to support Pt clusters, of which the influences on PDH were revealed by density functional theory calculations. Nanocarbons with divacancies (V2) and CO edge groups were screened out as the most appropriate support for Pt clusters in PDH. Due to the V2, tetrahedral Pt clusters were distorted into three-layered configurations, contributing to enhanced binding strength and a favorable reactive pathway starting from the methylene group in propane. This changed the rate-determining step to the first C-H bond scission with a low energy barrier. The introduction of CO edge groups coexisting with V2 further improved the stabilization of Pt clusters, resulting from the increased electron transfer from Pt atoms to C atoms. The abilities to break C-H bonds and inhibit C-C bond cracking were also enhanced as compared to the nanocarbons with only V2. Therefore, this work provides references on the regulation of vacancies and OCGs in carbon-based catalysts.
Collapse
Affiliation(s)
- Ziwei Zhai
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Bofeng Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Yutong Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Li Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Sibao Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Guozhu Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|