1
|
McGrogan A, Lafferty J, O’Neill L, Brown L, Young JM, Goodrich P, Muldoon MJ, Moura L, Youngs S, Hughes TL, Gärtner S, Youngs TGA, Holbrey JD, Swadźba-Kwaśny M. Liquid Structure of Ionic Liquids with [NTf 2] - Anions, Derived from Neutron Scattering. J Phys Chem B 2024; 128:3220-3235. [PMID: 38520396 PMCID: PMC11000221 DOI: 10.1021/acs.jpcb.3c08069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 03/25/2024]
Abstract
The liquid structure of three common ionic liquids (ILs) was investigated by neutron scattering for the first time. The ILs were based on the bis(trifluoromethanesulfonyl)imide anion, abbreviated in the literature as [NTf2]- or [TFSI]-, and on the following cations: 1-ethyl-3-methylimidazolium, [C2mim]+; 1-decyl-3-methylimidazolium, [C10mim]+; and trihexyl(tetradecyl)phosphonium, [P666,14]+. Comparative analysis of the three ILs confirmed increased size of nonpolar nanodomains with increasing bulk of alkyl chains. It also sheds light on the cation-anion interactions, providing experimental insight into strength, directionality, and angle of hydrogen bonds between protons on the imidazolium ring, as well as H-C-P protons in [P666,14]+, to oxygen and nitrogen atoms in the [NTf2]-. The new Dissolve data analysis package enabled, for the first time, the analysis of neutron scattering data of ILs with long alkyl chains, in particular, of [P666,14][NTf2]. Results generated with Dissolve were validated by comparing outputs from three different models, starting from three different sets of cation charges, for each of the three ILs, which gave convergent outcomes. Finally, a modified method for the synthesis of perdeuterated [P666,14][NTf2] has been reported, with the aim of reporting a complete set of synthetic and data processing approaches, laying robust foundations that enable the study of the phosphonium ILs family by neutron scattering.
Collapse
Affiliation(s)
- Anne McGrogan
- QUILL
Research Centre, Queen’s University Belfast, School of Chemistry and Chemical Engineering, David Keir Building, 39-123 Stranmillis Road, Belfast BT9 5AG, Belfast, U.K.
| | - Jack Lafferty
- QUILL
Research Centre, Queen’s University Belfast, School of Chemistry and Chemical Engineering, David Keir Building, 39-123 Stranmillis Road, Belfast BT9 5AG, Belfast, U.K.
| | - Lauren O’Neill
- QUILL
Research Centre, Queen’s University Belfast, School of Chemistry and Chemical Engineering, David Keir Building, 39-123 Stranmillis Road, Belfast BT9 5AG, Belfast, U.K.
| | - Lucy Brown
- QUILL
Research Centre, Queen’s University Belfast, School of Chemistry and Chemical Engineering, David Keir Building, 39-123 Stranmillis Road, Belfast BT9 5AG, Belfast, U.K.
| | - J. Mark. Young
- QUILL
Research Centre, Queen’s University Belfast, School of Chemistry and Chemical Engineering, David Keir Building, 39-123 Stranmillis Road, Belfast BT9 5AG, Belfast, U.K.
| | - Peter Goodrich
- QUILL
Research Centre, Queen’s University Belfast, School of Chemistry and Chemical Engineering, David Keir Building, 39-123 Stranmillis Road, Belfast BT9 5AG, Belfast, U.K.
| | - Mark J. Muldoon
- QUILL
Research Centre, Queen’s University Belfast, School of Chemistry and Chemical Engineering, David Keir Building, 39-123 Stranmillis Road, Belfast BT9 5AG, Belfast, U.K.
| | - Leila Moura
- QUILL
Research Centre, Queen’s University Belfast, School of Chemistry and Chemical Engineering, David Keir Building, 39-123 Stranmillis Road, Belfast BT9 5AG, Belfast, U.K.
| | - Sarah Youngs
- Rutherford
Appleton Laboratory, Chilton, Didcot OX11 0QX, U.K.
| | | | - Sabrina Gärtner
- Rutherford
Appleton Laboratory, Chilton, Didcot OX11 0QX, U.K.
| | | | - John D. Holbrey
- QUILL
Research Centre, Queen’s University Belfast, School of Chemistry and Chemical Engineering, David Keir Building, 39-123 Stranmillis Road, Belfast BT9 5AG, Belfast, U.K.
| | - Małgorzata Swadźba-Kwaśny
- QUILL
Research Centre, Queen’s University Belfast, School of Chemistry and Chemical Engineering, David Keir Building, 39-123 Stranmillis Road, Belfast BT9 5AG, Belfast, U.K.
| |
Collapse
|
2
|
Impact of Dispersion Force Schemes on Liquid Systems: Comparing Efficiency and Drawbacks for Well-Targeted Test Cases. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27249034. [PMID: 36558168 PMCID: PMC9785970 DOI: 10.3390/molecules27249034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
First-principles molecular dynamics (FPMD) calculations were performed on liquid GeSe4 with the aim of inferring the impact of dispersion (van der Waals, vdW) forces on the structural properties. Different expressions for the dispersion forces were employed, allowing us to draw conclusions on their performances in a comparative fashion. These results supersede previous FPMD calculations obtained in smaller systems and shorter time trajectories by providing data of unprecedented accuracy. We obtained a substantial agreement with experiments for the structure factor regardless of the vdW scheme employed. This objective was achieved by using (in addition to FPMD with no dispersion forces) a selection of vdW schemes available within density functional theory. The first two are due to Grimme, D2 and D3, and the third one is devised within the so-called maximally localized Wannier functions approach (MLWF). D3 results feature a sizeable disagreement in real space with D2 and MLWF in terms of the partial and total pair correlation functions as well as the coordination numbers. More strikingly, total and partial structure factors calculated with D3 exhibit an unexpected sharp increase at low k. This peculiarity goes along with large void regions within the network, standing for a phase separation of indecipherable physical meaning. In view of these findings, further evidence of unconventional structural properties found by employing D3 is presented by relying on results obtained for a complex ionic liquid supported on a solid surface. The novelty of our study is multifold: new, reliable FPMD data for a prototypical disordered network system, convincing agreement with experimental data and assessment of the impact of dispersion forces, with emphasis on the intriguing behavior of one specific recipe and the discovery of common structural features shared by drastically dissimilar physical systems when the D3 vdW scheme is employed.
Collapse
|
3
|
Bonagiri LKS, Panse KS, Zhou S, Wu H, Aluru NR, Zhang Y. Real-Space Charge Density Profiling of Electrode-Electrolyte Interfaces with Angstrom Depth Resolution. ACS NANO 2022; 16:19594-19604. [PMID: 36351178 DOI: 10.1021/acsnano.2c10819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The accumulation and depletion of charges at electrode-electrolyte interfaces is crucial for all types of electrochemical processes. However, the spatial profile of such interfacial charges remains largely elusive. Here we develop charge profiling three-dimensional (3D) atomic force microscopy (CP-3D-AFM) to experimentally quantify the real-space charge distribution of the electrode surface and electric double layers (EDLs) with angstrom depth resolution. We first measure the 3D force maps at different electrode potentials using our recently developed electrochemical 3D-AFM. Through statistical analysis, peak deconvolution, and electrostatic calculations, we derive the depth profile of the local charge density. We perform such charge profiling for two types of emergent electrolytes, ionic liquids, and highly concentrated aqueous solutions, observe pronounced sub-nanometer charge variations, and find the integrated charge densities to agree with those derived from macroscopic electrochemical measurements.
Collapse
Affiliation(s)
- Lalith Krishna Samanth Bonagiri
- Materials Research Laboratory, University of Illinois, Urbana, Illinois61801, United States
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois61801, United States
| | - Kaustubh S Panse
- Materials Research Laboratory, University of Illinois, Urbana, Illinois61801, United States
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois61801, United States
| | - Shan Zhou
- Materials Research Laboratory, University of Illinois, Urbana, Illinois61801, United States
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois61801, United States
| | - Haiyi Wu
- Walker Department of Mechanical Engineering and Oden Institute for Computational Engineering & Sciences, The University of Texas at Austin, Austin, Texas78712, United States
| | - Narayana R Aluru
- Walker Department of Mechanical Engineering and Oden Institute for Computational Engineering & Sciences, The University of Texas at Austin, Austin, Texas78712, United States
| | - Yingjie Zhang
- Materials Research Laboratory, University of Illinois, Urbana, Illinois61801, United States
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois61801, United States
| |
Collapse
|