1
|
Di Maiolo F, Phan Huu DKA, Giavazzi D, Landi A, Racchi O, Painelli A. Shedding light on thermally-activated delayed fluorescence. Chem Sci 2024; 15:5434-5450. [PMID: 38638233 PMCID: PMC11023041 DOI: 10.1039/d4sc00033a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/17/2024] [Indexed: 04/20/2024] Open
Abstract
Thermally activated delayed fluorescence (TADF) is a hot research topic in view of its impressive applications in a wide variety of fields from organic LEDs to photodynamic therapy and metal-free photocatalysis. TADF is a rare and fragile phenomenon that requires a delicate equilibrium between tiny singlet-triplet gaps, sizable spin-orbit couplings, conformational flexibility and a balanced contribution of charge transfer and local excited states. To make the picture more complex, this precarious equilibrium is non-trivially affected by the interaction of the TADF dye with its local environment. The concurrent optimization of the dye and of the embedding medium is therefore of paramount importance to boost practical applications of TADF. Towards this aim, refined theoretical and computational approaches must be cleverly exploited, paying attention to the reliability of adopted approximations. In this perspective, we will address some of the most important issues in the field. Specifically, we will critically review theoretical and computational approaches to TADF rates, highlighting the limits of widespread approaches. Environmental effects on the TADF photophysics are discussed in detail, focusing on the major role played by dielectric and conformational disorder in liquid solutions and amorphous matrices.
Collapse
Affiliation(s)
- Francesco Di Maiolo
- Dept. Chemistry, Life Science and Environmental Sustainability, University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - D K Andrea Phan Huu
- Dept. Chemistry, Life Science and Environmental Sustainability, University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Davide Giavazzi
- Dept. Chemistry, Life Science and Environmental Sustainability, University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Andrea Landi
- Dept. Chemistry, Life Science and Environmental Sustainability, University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Ottavia Racchi
- Dept. Chemistry, Life Science and Environmental Sustainability, University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Anna Painelli
- Dept. Chemistry, Life Science and Environmental Sustainability, University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| |
Collapse
|
2
|
Chen G, Swartzfager JR, Asbury JB. Matrix Dynamics and Their Crucial Role in Non-radiative Decay during Thermally Activated Delayed Fluorescence. J Am Chem Soc 2023; 145:25495-25504. [PMID: 37955854 DOI: 10.1021/jacs.3c11719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
We investigated the interplay of matrix dynamics with the molecular dynamics of a thermally activated delayed fluorescence (TADF) emitter, NAI-DMAC, to identify factors that influence the photophysical processes leading to TADF. The matrix dynamics surrounding NAI-DMAC molecules were varied continuously from the liquid to the solid state by depositing toluene solutions containing poly(methyl methacrylate) (PMMA) and NAI-DMAC onto optical substrates. We monitored changes of the NAI-DMAC emission as the liquid films dried to form solid PMMA films using temperature- and time-resolved photoluminescence spectroscopy. We observed that, in low-viscosity solutions, the proportion of delayed fluorescence from NAI-DMAC was much smaller than that of prompt fluorescence, indicating that negligible TADF occurred in the low-viscosity environment. However, as the viscosity of the environment diverged at the final stages of dry-down to form solid PMMA films, the delayed fluorescence component of NAI-DMAC emission was extended to longer time scales and increased in amplitude relative to prompt emission as the temperature increased─signatures that TADF occurred in the solid state as expected. Our findings reveal the influence that matrix dynamics have on the competition between conformational motion needed to access emissive states and undergo TADF versus larger amplitude structural fluctuations that lead to non-radiative decay. Insights from these studies will inform ongoing work to understand and predict how host matrices used in organic light-emitting devices can be designed to maximize the radiative properties of TADF emitters by allowing molecular motion needed to undergo TADF while restricting larger amplitude motion leading to non-radiative decay.
Collapse
Affiliation(s)
- Gary Chen
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - John R Swartzfager
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - John B Asbury
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
3
|
Kundu A, Galli G. Quantum Vibronic Effects on the Electronic Properties of Molecular Crystals. J Chem Theory Comput 2023. [PMID: 37378491 DOI: 10.1021/acs.jctc.3c00424] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
We present a study of molecular crystals, focused on the effect of nuclear quantum motion and anharmonicity on their electronic properties. We consider a system composed of relatively rigid molecules, a diamondoid crystal, and one composed of floppier molecules, NAI-DMAC, a thermally activated delayed fluorescence compound. We compute fundamental electronic gaps at the density functional theory (DFT) level of theory, with the Perdew-Burke-Erzenhof (PBE) and strongly constrained and approximately normed (SCAN) functionals, by coupling first-principles molecular dynamics with a nuclear quantum thermostat. We find a sizable zero-point renormalization (ZPR) of the band gaps, which is much larger in the case of diamondoids (0.6 eV) than for NAI-DMAC (0.22 eV). We show that the frozen phonon (FP) approximation, which neglects intermolecular anharmonic effects, leads to a large error (∼50%) in the calculation of the band gap ZPR. Instead, when using a stochastic method, we obtain results in good agreement with those of our quantum simulations for the diamondoid crystal. However, the agreement is worse for NAI-DMAC where intramolecular anharmonicities contribute to the ZPR. Our results highlight the importance of accurately including nuclear and anharmonic quantum effects to predict the electronic properties of molecular crystals.
Collapse
Affiliation(s)
- Arpan Kundu
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Giulia Galli
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
4
|
Swartzfager JR, Chen G, Francese T, Galli G, Asbury JB. Interplay of molecular dynamics and radiative decay of a TADF emitter in a glass-forming liquid. Phys Chem Chem Phys 2023; 25:3151-3159. [PMID: 36621848 DOI: 10.1039/d2cp05138a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We investigate the role of molecular dynamics in the luminescent properties of a prototypical thermally activated delayed fluorescence (TADF) emitter, NAI-DMAC, in solution using a combination of temperature dependent time-resolved photoluminescence and absorption spectroscopies. We use a glass forming liquid, 2-methylfuran, to introduce an abrupt change in the temperature dependent diffusion dynamics of the solvent and examine the influence this has on the emission intensity of NAI-DMAC molecules. Comparison of experiment with first principles molecular dynamics simulations reveals that the emission intensity of NAI-DMAC molecules follows the temperature-dependent self-diffusion dynamics of the solvent. A marked reduction of emission intensity is observed as the temperature decreases toward the glass transition because the rate at which NAI-DMAC molecules can access emissive molecular conformations is greatly reduced. Below the glass transition, the diffusion dynamics of the solvent changes more slowly with temperature, which causes the emission intensity to decrease more slowly as well. The combination of experiment and computation suggests a pathway by which TADF emitters may transiently access a distribution of conformational states and avoid the need for an average conformation that strikes a balance between lower singlet-triplet energy splittings versus higher emission probabilities.
Collapse
Affiliation(s)
- John R Swartzfager
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Gary Chen
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Tommaso Francese
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Giulia Galli
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.,Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL, 60439, USA.,Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA
| | - John B Asbury
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
5
|
Phan Huu DK, Saseendran S, Dhali R, Franca LG, Stavrou K, Monkman A, Painelli A. Thermally Activated Delayed Fluorescence: Polarity, Rigidity, and Disorder in Condensed Phases. J Am Chem Soc 2022; 144:15211-15222. [PMID: 35944182 PMCID: PMC9413221 DOI: 10.1021/jacs.2c05537] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 12/27/2022]
Abstract
We present a detailed and comprehensive picture of the photophysics of thermally activated delayed fluorescence (TADF). The approach relies on a few-state model, parametrized ab initio on a prototypical TADF dye, that explicitly accounts for the nonadiabatic coupling between electrons and vibrational and conformational motion, crucial to properly address (reverse) intersystem crossing rates. The Onsager model is exploited to account for the medium polarity and polarizability, with careful consideration of the different time scales of relevant degrees of freedom. TADF photophysics is then quantitatively addressed in a coherent and exhaustive approach that accurately reproduces the complex temporal evolution of emission spectra in liquid solvents as well as in solid organic matrices. The different rigidity of the two environments is responsible for the appearance in matrices of important inhomogeneous broadening phenomena that are ascribed to the intertwined contribution from (quasi)static conformational and dielectric disorder.
Collapse
Affiliation(s)
- D. K.
Andrea Phan Huu
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Sangeeth Saseendran
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Rama Dhali
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | | | - Kleitos Stavrou
- Department
of Physics, Durham University, South Road, Durham DH1 3LE, U.K.
| | - Andrew Monkman
- Department
of Physics, Durham University, South Road, Durham DH1 3LE, U.K.
| | - Anna Painelli
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| |
Collapse
|
6
|
Li P, Zhou C, Zhang Y, Chen C, Zheng C, Chen R. Constructing high-performance TADF polymers from non-TADF monomers: a computational investigation. Phys Chem Chem Phys 2022; 24:17686-17694. [PMID: 35838115 DOI: 10.1039/d2cp01698b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thermally activated delayed fluorescence (TADF) polymers excelling in simple, low-cost and large-area solution process ability have attracted tremendous attention recently, but it remains a great challenge for the design of such materials due to the lack of reliable molecular construction guidelines. Here we perform a systematic computational investigation on the construction of TADF polymers from non-TADF monomers to elucidate the effects of polymerization sites, substituent positions and substituent types. The results indicate that the polymerization of 3,6-carbazole-based monomers with different substituents is efficient to build TADF polymers due to their facile π-conjugation extendability. Especially, polymers with para-phenyl-substituted monomers are promising in light of their separated frontier molecular orbitals for small ΔEST with favorable energy levels, bipolar charge transport properties and relatively strong absorption/emission intensity, which should be highly attractive for experimental investigations. These findings and insights are important in revealing the structure-property relation of TADF polymers made from non-TADF monomers with important clues for understanding the construction mechanism and molecular design principles of TADF polymers.
Collapse
Affiliation(s)
- Ping Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.
| | - Cefeng Zhou
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.
| | - Yewen Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.
| | - Cailin Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.
| | - Chao Zheng
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.
| | - Runfeng Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|