1
|
Shivhare A, Dehariya B, Gadre SR, Deshmukh MM. Cyclic cooperativity contributions determine the hydrogen bond strengths in molecular clusters. Phys Chem Chem Phys 2025; 27:3661-3672. [PMID: 39877964 DOI: 10.1039/d4cp04741a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
In a recent communication (A. Shivhare, B. Dehariya, S. R. Gadre and M. M. Deshmukh, Phys. Chem. Chem. Phys., 2024, 26, 21332), we proposed a method for calculating the energy of a hydrogen bond (HB), which is common to two or more cyclic networks of HBs in water (H2O)n clusters. For this purpose, the sum of the cooperativity contributions (CCs) of these cyclic structures, estimated using the molecular tailoring approach (MTA)-based method, was added to the energy of this HB in the respective water dimer isolated from the cluster. The HB energies calculated in this fashion (ESynergeticHB) were in excellent agreement with their actual cluster counterparts (EclusterHB). In this work, we test the generality of this methodology. For this purpose, we employed clusters of ammonia (NH3)n, hydrogen sulphide (H2S)n, mixed (H2S)m(H2O)n, (NH3)m(H2O)n, methanol-water (CH3OH)m(H2O)n, and hydrogen fluoride-water (HF)m(H2O)n exhibiting HBs of variable strength (1 to 19 kcal mol-1). The HB energies in all these molecular clusters calculated using the present method were found to be accurate. The absolute difference between the ESynergeticHB and EclusterHB values in these clusters is found to be less than 0.5 kcal mol-1. Importantly, the present method not only enables accurate HB energy estimation in molecular clusters, but also offers qualitative guidelines for this purpose. The latter are based on the nature of cyclic cooperativity, exhibiting either full cyclic cooperativity (FCC), partial cyclic cooperativity (PCC) or anti-cooperativity (AC).
Collapse
Affiliation(s)
- Ayush Shivhare
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar-470003, India.
| | - Bharti Dehariya
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar-470003, India.
| | - Shridhar R Gadre
- Department of Scientific Computing, Modelling and Simulation & Department of Chemistry, Savitribai Phule Pune University, Pune-411007, India
| | - Milind M Deshmukh
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar-470003, India.
| |
Collapse
|
2
|
Dehariya B, Ahirwar MB, Shivhare A, Deshmukh MM. Appraisal of the Fragments-In-Fragments Method for the Energetics of Individual Hydrogen Bonds in Molecular Crystals. J Comput Chem 2025; 46:e70008. [PMID: 39755585 DOI: 10.1002/jcc.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 01/06/2025]
Abstract
We report a direct application of the molecular tailoring approach-based (MTA-based) method to calculate the individual hydrogen bond (HB) energy in molecular crystal. For this purpose, molecular crystals of nitromalonamide (NMA) and salicylic acid (SA) were taken as test cases. Notably, doing a correlated computation using a large molecular crystal structure is difficult. Among 15 density functional theory functionals, the B3LYP provides accurate estimates of HB energies closed to the CCSD(T) ones using the 6-311 + G(d,p) basis set for all atoms. The direct application of the MTA-based method to these crystal structures is although straightforward. For instance, the calculated energy suggests that three intramolecular HBs in NMA crystal are of stronger strength (7.3-17.0 kcal/mol) than the intermolecular ones (2.7-4.0 kcal/mol). On the other hand, intermolecular HB in SA crystal is moderately stronger (9.9 kcal/mol) than intramolecular one (8.1 kcal/mol). However, these energy calculations by the MTA-based method are very expensive. For instance, the time needed to evaluate the energy of all seven HBs in NMA crystal (having molecules within maximum of 15 unit cells) is 122,681 min (~2.7 months). In view of this, we assessed our recently proposed linear-scaling Fragments-in-Fragments (Frags-in-Frags) method for estimating the single-point energies of parent molecular crystal and fragments of the MTA-based method. It has been found that the estimated HB energies by the Frags-in-Frags method are in excellent linear agreement with their MTA-based counterparts (R2 = 0.9993). Furthermore, root mean square deviation is 0.12 kcal/mol. Mean and maximum absolute errors are 0.10 and 0.5 kcal/mol, respectively, and the standard deviation is 0.14 kcal/mol. Importantly, the Frags-in-Frags method is computationally efficient; it needs only 18,289 min (~12.7 days) for the estimation of energy of all HBs in NMA crystal and 3499 min (~2.4 days) for all HBs in SA crystal.
Collapse
Affiliation(s)
- Bharti Dehariya
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya, (A Central University), Sagar, India
| | - Mini Bharati Ahirwar
- Institute for Integrated Cell-Material Sciences, Rohm Plaza, R312, Kyoto University, Kyoto, Japan
| | - Ayush Shivhare
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya, (A Central University), Sagar, India
| | - Milind M Deshmukh
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya, (A Central University), Sagar, India
| |
Collapse
|
3
|
Shivhare A, Dehariya B, Gadre SR, Deshmukh MM. On the synergetic effects of cyclic cooperativity in water clusters. Phys Chem Chem Phys 2024; 26:21332-21336. [PMID: 39101477 DOI: 10.1039/d4cp02580f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
The present study delves into the question of how the strength of a hydrogen bond (HB) common to two or more cyclic HB networks is influenced by the cooperativity contributions (CCs) of these cycles. We employ the molecular tailoring approach-based method to calculate the cyclic CCs in water clusters, Wn (n = 6-20). The energy of an HB in a Wn cluster is estimated by adding the total cyclic CC to its counterpart in the respective dimer. The resulting HB energies closely match their full cluster counterparts, typically within 1.0 kcal mol-1, with substantial CCs of these cyclic networks.
Collapse
Affiliation(s)
- Ayush Shivhare
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar-470003, India.
| | - Bharti Dehariya
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar-470003, India.
| | - Shridhar R Gadre
- Department of Scientific Computing, Modelling and Simulation & Department of Chemistry, Savitribai Phule Pune University, Pune-411007, India
| | - Milind M Deshmukh
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar-470003, India.
| |
Collapse
|
4
|
Ahirwar MB, Gadre SR, Deshmukh MM. Molecular Tailoring Approach for the Direct Estimation of Individual Noncovalent Interaction Energies in Molecular Systems. J Phys Chem A 2024; 128:6099-6115. [PMID: 39037864 DOI: 10.1021/acs.jpca.4c01176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The noncovalent interactions (NCIs) are omnipresent in chemistry, physics, and biology. The study of such interactions offers insights into various physicochemical phenomena. Some indirect approaches proposed in the literature for exploring the NCIs are briefly reviewed in Section 1 of this Perspective. These include: (i) Shift in the stretching frequency of an X-Y bond involved in X-Y···Z interaction. (ii) Topological analysis of molecular electron density. (iii) Empirical equations derived employing experimental and theoretical quantities. However, a direct method for estimating individual intramolecular/intermolecular interaction energies has been conspicuous by its absence from the literature. We have developed a molecular tailoring approach (MTA)-based method enabling a direct and reliable estimation of the energy of intra- as well as intermolecular interactions. This method offers a direct and reliable estimation of these interactions, in particular of the hydrogen bonds (HB) in molecules/weakly bound clusters along with the respective cooperativity contribution. In Section 2, the basis of our method is discussed, along with some illustrative examples. The application of this method to a variety of molecules and clusters, with a special emphasis on estimating the HB energy along with the energy of other NCIs is presented in Section 3. Section 4 discusses some computational strategies for applying our method to large molecular clusters. The last Section provides a summary and a discussion on future developments.
Collapse
Affiliation(s)
- Mini Bharati Ahirwar
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, India
| | - Shridhar R Gadre
- Department of Scientific Computing, Modelling, & Simulation, Savitribai Phule Pune University, Pune 411007, India
- Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India
| | - Milind M Deshmukh
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, India
| |
Collapse
|
5
|
Ahirwar MB, Khire SS, Gadre SR, Deshmukh MM. Hydrogen bond energy estimation (H-BEE) in large molecular clusters: A Python program for quantum chemical investigations. J Comput Chem 2024; 45:274-283. [PMID: 37792345 DOI: 10.1002/jcc.27237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/05/2023]
Abstract
A procedure, derived from the fragmentation-based molecular tailoring approach (MTA), has been proposed and extensively applied by Deshmukh and Gadre for directly estimating the individual hydrogen bond (HB) energies and cooperativity contributions in molecular clusters. However, the manual fragmentation and high computational cost of correlated quantum chemical methods make the application of this method to large molecular clusters quite formidable. In this article, we report an in-house developed software for automated hydrogen bond energy estimation (H-BEE) in large molecular clusters. This user-friendly software is essentially written in Python and executed on a Linux platform with the Gaussian package at the backend. Two approximations to the MTA-based procedure, viz. the first spherical shell (SS1) and the Fragments-in-Fragments (Frags-in-Frags), enabling cost-effective, automated evaluation of HB energies and cooperativity contributions, are also implemented in this software. The software has been extensively tested on a variety of molecular clusters and is expected to be of immense use, especially in conjunction with correlated methods such as MP2, CCSD(T), and so forth.
Collapse
Affiliation(s)
- Mini Bharati Ahirwar
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| | | | - Shridhar R Gadre
- Department of Scientific Computing, Modelling & Simulation, Savitribai Phule Pune University, Pune, India
- Department of Chemistry, Savitribai Phule Pune University, Pune, India
| | - Milind M Deshmukh
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| |
Collapse
|
6
|
Ismail TM, Patkar D, Sajith PK, Deshmukh MM. Interplay of Hydrogen, Pnicogen, and Chalcogen Bonding in X(H 2O) n=1-5 (X = NO, NO +, and NO -) Complexes: Energetics Insights via a Molecular Tailoring Approach. J Phys Chem A 2023. [PMID: 38029408 DOI: 10.1021/acs.jpca.3c04181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Nitric oxide (NO) and its redox congeners (NO+ and NO-), designated as X, play vital roles in various atmospheric and biological events. Understanding the interaction between X and water is inevitable to explain the different reactions that occur during these events. The present study is a unified attempt to explore the noncovalent interactions in microhydrated networks of X using the MP2/aug-cc-pVTZ//MP2/6-311++G(d,p) level of theory. The interactions between X and water have been probed by the molecular electrostatic potential (MESP) by exploiting the features of the most positive (Vmax) and most negative potential (Vmin) sites. The individual energy and cooperativity contributions of various types of noncovalent interactions present in X(H2O)n=1-5 complexes are estimated with the help of a molecular tailoring-based approach (MTA-based). The MTA-based analysis reveals that among various possible interactions in NO(H2O)n complexes, the water···water hydrogen bonds (HBs) are the strongest. Neutral NO can form hydrogen and pnicogen bonds (PBs) with water depending on the orientation; however, such HBs and PBs are the weakest. On the other hand, in the NO+(H2O)n complexes, the NO+···water interactions that occur through PBs are the strongest; the next one is the chalcogen bonding (CB), and the water···water HBs are the weakest. In the case of the NO-(H2O)n complexes, the HB interactions via both N and O atoms of NO- and water molecules are the strongest ones. The strength of water···water HB interactions is also seen to increase with the increase in the number of water molecules in NO-(H2O)n. The present study exemplifies the applicability of MTA-based calculations for quantifying various types of individual noncovalent interactions and their interplay in microhydrated networks of NO and its related ions.
Collapse
Affiliation(s)
- Thufail M Ismail
- Department of Chemistry, Farook College, Kozhikode, Kerala 673632, India
| | - Deepak Patkar
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, India
| | - Pookkottu K Sajith
- Department of Chemistry, Farook College, Kozhikode, Kerala 673632, India
| | - Milind M Deshmukh
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, India
| |
Collapse
|
7
|
Khire SS, Nakajima T, Gadre SR. REAlgo: Rapid and efficient algorithm for estimating MP2/CCSD energy gradients for large molecular clusters. J Chem Phys 2023; 159:184109. [PMID: 37955321 DOI: 10.1063/5.0174726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
This work reports the development of an algorithm for rapid and efficient evaluation of energy gradients for large molecular clusters employing correlated methods viz. second-order Møller-Plesset perturbation theory (MP2) theory and couple cluster singles and doubles (CCSD). The procedure segregates the estimation of Hartree-Fock (HF) and correlation components. The HF energy and gradients are obtained by performing a full calculation. The correlation energy is approximated as the corresponding two-body interaction energy. Correlation gradients for each monomer are approximated from the respective monomer-centric fragments comprising its immediate neighbours. The programmed algorithm is explored for the geometry optimization of large molecular clusters using the BERNY optimizer as implemented in the Gaussian suite of software. The accuracy and efficacy of the method are critically probed for a variety of large molecular clusters containing up to 3000 basis functions, in particular large water clusters. The CCSD level geometry optimization of molecular clusters containing ∼800 basis functions employing a modest hardware is also reported.
Collapse
Affiliation(s)
- Subodh S Khire
- RIKEN Center for Computational Science, Kobe 6500047, Japan
| | | | - Shridhar R Gadre
- Department of Scientific Computing, Modelling and Simulation, Savitribai Phule Pune University, Pune 411007, India
- Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India
| |
Collapse
|
8
|
Ahirwar MB, Deshmukh MM. Fragments-in-fragments method for efficient and reliable estimates of individual hydrogen bond energies in large molecular clusters. J Comput Chem 2023. [PMID: 37191018 DOI: 10.1002/jcc.27133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/17/2023]
Abstract
The knowledge of individual hydrogen bond (HB) strength in molecular clusters is indispensable to get insights into the bulk properties of condensed systems. Recently, we have developed the molecular tailoring approach based (MTA-based) method for the estimation of individual HB energy in molecular clusters. However, the direct use of this MTA-based method to large molecular clusters becomes progressively difficult with the increase in the size of a cluster. To overcome this caveat, herein, we propose the use of linear scaling method (such as the original MTA method) for the estimation of single-point (SP) energies of large-sized parent molecular cluster and their respective fragments. Because the fragments of the MTA-based method, for the estimation of HB energy, are further fragmented, this proposed strategy is called as Fragments-in-Fragments (Frags-in-Frags) method. The SP energies of fragments and parent cluster calculated by the Frags-in-Frags approach were utilized to estimate the individual HB energy. The estimated individual HB energies, in various molecular clusters, by Frags-in-Frags method are found to be in excellent linear agreement with their MTA-based counterparts (R2 = 0.9975 of 348 data points). The difference being less than 0.5 kcal/mol in most of the cases. Furthermore, RMSD is 0.43 kcal/mol, MAE is 0.33 kcal/mol, and the standard deviation is 0.44 kcal/mol. Importantly, the Frags-in-Frags method not only enables the reliable estimation of HB energy in large molecular clusters but also requires less computational time and can be possible even with off-the-shelf hardware.
Collapse
Affiliation(s)
- Mini Bharati Ahirwar
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| | - Milind M Deshmukh
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| |
Collapse
|
9
|
Ahirwar MB, Gadre SR, Deshmukh MM. On the Short-Range Nature of Cooperativity in Hydrogen-Bonded Large Molecular Clusters. J Phys Chem A 2023; 127:4394-4406. [PMID: 37186960 DOI: 10.1021/acs.jpca.3c00359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The variation in the hydrogen bond (HB) strength has considerable consequences on the physicochemical properties of molecular clusters. Such a variation mainly arises due to the cooperative/anti-cooperative networking effect of neighboring molecules connected by HBs. In the present work, we systematically study the effect of neighboring molecules on the strength of an individual HB and the respective cooperativity contribution toward each of them in a variety of molecular clusters. For this purpose, we propose a use of a small model of a large molecular cluster called the spherical shell-1 (SS1) model. This SS1 model is constructed by placingg the spheres of an appropriate radius centered on X and Y atoms of the X-H···Y HB under consideration. The molecules falling within these spheres constitute the SS1 model. Utilizing this SS1 model, the individual HB energies are calculated within the molecular tailoring approach-based framework and the results are compared with their actual counterparts. It is found that the SS1 is a reasonably good model of large molecular clusters, providing 81-99% of the total HB energy estimated using the actual molecular clusters. This in turn suggests that the maximum cooperativity contribution toward a particular HB is due to the fewer number of molecules (in the SS1 model) directly interacting with two molecules involved in its formation. We further demonstrate that the remaining part of the energy or cooperativity (∼1 to 19%) is captured by the molecules falling in the second spherical shell (SS2) centered on the hetero-atom of the molecules in the SS1 model. The effect of increasing size of a cluster on the strength of a particular HB, calculated by the SS1 model, is also investigated. The calculated value of the HB energy remains unchanged with the increase in the size of a cluster, emphasizing the short-ranged nature of the HB cooperativity in neutral molecular clusters.
Collapse
Affiliation(s)
- Mini Bharati Ahirwar
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, India
| | - Shridhar R Gadre
- Department of Scientific Computing, Modelling, and Simulation, Savitribai Phule Pune University, Pune 411007, India
| | - Milind M Deshmukh
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, India
| |
Collapse
|
10
|
Ahirwar MB, Deshmukh MM. Two-Step ONIOM Method for the Accurate Estimation of Individual Hydrogen Bond Energy in Large Molecular Clusters. J Phys Chem A 2023; 127:1219-1232. [PMID: 36705264 DOI: 10.1021/acs.jpca.2c08087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The study of molecular clusters to understand the properties of condensed systems has been the subject of immense interest. To get insight into these properties, the knowledge of various noncovalent interactions present in these molecular clusters is indispensable. Our recently developed molecular tailoring approach-based (MTA-based) method for the estimation of the individual hydrogen bond (HB) energy in molecular clusters is useful for this purpose. However, the direct application of this MTA-based method becomes progressively difficult with the increase in the size of the cluster. This is because of the difficulty in the evaluation of single-point energy at the correlated level of theory. To overcome this caveat, herein, we propose a two-step method within the our own N-layer integrated molecular orbital molecular mechanics (ONIOM) framework. In this method, the HB energy evaluated by the MTA-based method employing the actual molecular cluster at a low Hartree-Fock (HF) level of theory is added to the difference in the HB energies evaluated by the MTA-based method, employing an appropriate small model system, called the shell-1 model, calculated at high (MP2) and low (HF) levels of theory. The shell-1 model of a large molecular cluster is made up of only a few molecules that are in direct contact (by a single HB) with the two molecules involved in the formation of an HB under consideration. We tested this proposed two-step ONIOM method to estimate the individual HB energies in various molecular clusters, viz., water (Wn, n = 10-16, 18 and 20), (H2O2)12, (H2O3)8, (NH3)n and strongly interacting (HF)15 and (HF)m(W)n clusters. Furthermore, these estimated individual HB energies by the ONIOM method are compared with those calculated by the MTA-based method using actual molecular clusters. The estimated individual HB energies by the ONIOM method, in all these clusters, are in excellent linear one-to-one agreement (R2 = 0.9996) with those calculated by the MTA-based method using actual molecular clusters. Furthermore, the small values of root-mean-square deviation (0.06), mean absolute error (0.04), |ΔEmax| (0.21) and Sε (0.06) suggest that this two-step ONIOM method is a pragmatic approach to provide accurate estimates of individual HB energies in large molecular clusters.
Collapse
Affiliation(s)
- Mini Bharati Ahirwar
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar470003, India
| | - Milind M Deshmukh
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar470003, India
| |
Collapse
|
11
|
Patkar D, Bharati Ahirwar M, Deshmukh MM. A Tug of War between the Self- and Cross-associating Hydrogen Bonds in Neutral Ammonia-Water Clusters: Energetic Insights by Molecular Tailoring Approach. Chemphyschem 2022; 23:e202200476. [PMID: 36127809 DOI: 10.1002/cphc.202200476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/09/2022] [Indexed: 01/05/2023]
Abstract
In the present work, the energies of various types of individual HBs observed in neutral (NH3 )m (H2 O)n , (m+n=2 to 7) clusters were estimated using the molecular tailoring approach (MTA)-based method. The calculated individual HB energies suggest that the O-H…N HBs are the strongest (1.21 to 12.49 kcal mol-1 ). The next ones are the O-H…O (3.97 to 9.30 kcal mol-1 ) HBs. The strengths of N-H…N (1.09 to 5.29 kcal mol-1 ) and N-H…O (2.85 to 5.56 kcal mol-1 ) HBs are the weakest. The HB energies in dimers also follow this rank ordering. However, the HB energies in dimers are much smaller than those obtained by the MTA-based method due to the loss in cooperativity contribution in the dimers. Thus, the calculated cooperativity contributions, for different types of HBs, fall in the range 0.64 to 5.73 kcal mol-1 . We wish to emphasize based on the energetic rank ordering obtained by the MTA-based method that the O-H of water is a better HB donor than the N-H of ammonia. The reasons for the observed energetic rank ordering are two folds: (i) intrinsically stronger O-H…N HBs than the O-H…O ones as revealed by dimer energies and (ii) the higher cooperativity contribution in the former than the later ones. Indeed, the MTA-based method is useful in providing the missing energetic rank ordering of various type of HBs in neutral (NH3 )m (H2 O)n clusters, in the literature.
Collapse
Affiliation(s)
- Deepak Patkar
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya, (A Central University), 470003, Sagar, India
| | - Mini Bharati Ahirwar
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya, (A Central University), 470003, Sagar, India
| | - Milind M Deshmukh
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya, (A Central University), 470003, Sagar, India
| |
Collapse
|
12
|
Ni H. On the hydrophobic hydration, solvation and interface: A thought essay (I). J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|