1
|
Aminzare M, Li Y, Mahshid S, Dorval Courchesne NM. Mimicking nature to develop halide perovskite semiconductors from proteins and metal carbonates. Sci Rep 2024; 14:15357. [PMID: 38965313 PMCID: PMC11224268 DOI: 10.1038/s41598-024-66116-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024] Open
Abstract
Halide perovskite (HPs) nanostructures have recently gained extensive worldwide attentions because of their remarkable optoelectronic properties and fast developments. However, intrinsic instability against environmental factors-i.e., temperature, humidity, illumination, and oxygen-restricted their real-life applications. HPs are typically synthesized as colloids by employing organic solvents and ligands. Consequently, the precise control and tuning of complex 3D perovskite morphologies are challenging and have hardly been achieved by conventional fabrication methods. Here, we combine the benefits of self-assembly of biomolecules and an ion exchange reaction (IER) approach to customize HPs spatial shapes and composition. Initially, we apply a biomineralization approach, using biological templates (such as biopolymers, proteins, or protein assemblies), modulating the morphology of MCO3 (M = Ca2+, Ba2+) nano/microstructures. We then show that the morphology of the materials can be maintained throughout an IER process to form surface HPs with a wide variety of morphologies. The fabricated core-shell structures of metal carbonates and HPs introduce nano/microcomposites that can be sculpted into a wide diversity of 3D architectures suitable for various potential applications such as sensors, detectors, catalysis, etc. As a prototype, we fabricate disposable humidity sensors with an 11-95% detection range by casting the formed bio-templated nano/micro-composites on paper substrate.
Collapse
Affiliation(s)
- Masoud Aminzare
- Department of Chemical Engineering, McGill University, Montreal, Canada
| | - Yangshixing Li
- Department of Chemical Engineering, McGill University, Montreal, Canada
| | - Sara Mahshid
- Department of Bioengineering, McGill University, Montreal, Canada
| | | |
Collapse
|
2
|
Zhu W, Knoll P, Steinbock O. Exploring the Synthesis of Self-Organization and Active Motion. J Phys Chem Lett 2024; 15:5476-5487. [PMID: 38748082 DOI: 10.1021/acs.jpclett.4c01031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Proteins, genetic material, and membranes are fundamental to all known organisms, yet these components alone do not constitute life. Life emerges from the dynamic processes of self-organization, assembly, and active motion, suggesting the existence of similar artificial systems. Against this backdrop, our Perspective explores a variety of chemical phenomena illustrating how nonequilibrium self-organization and micromotors contribute to life-like behavior and functionalities. After explaining key terms, we discuss specific examples including enzymatic motion, diffusiophoretic and bubble-driven self-propulsion, pattern-forming reaction-diffusion systems, self-assembling inorganic aggregates, and hierarchically emergent phenomena. We also provide a roadmap for combining self-organization and active motion and discuss possible outcomes through biological analogs. We suggest that this research direction, deeply rooted in physical chemistry, offers opportunities for further development with broad impacts on related sciences and technologies.
Collapse
Affiliation(s)
- Wen Zhu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Pamela Knoll
- UK Centre for Astrobiology, School of Physics and Astronomy, Institute for Condensed Matter and Complex Systems, University of Edinburgh, Edinburgh EH9 3FD, U.K
| | - Oliver Steinbock
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
3
|
Hua E, Gao J, Xu Y, Matsuo M, Nakata S. Self-propelled motion controlled by ionic liquids. Phys Chem Chem Phys 2024; 26:8488-8493. [PMID: 38411193 DOI: 10.1039/d3cp05630a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
We studied the self-propulsion of a camphor disk floating on a water surface using two types of ionic liquids (hexylammonium-trifluoroacetate (HHexam-TFA) and hexylethylenediaminium-trifluoroacetate (HHexen-TFA)). Bifurcation between continuous, oscillatory, and no motion was observed depending on the concentration of the ionic liquid. The bifurcation concentration between oscillatory and no motion for HHexam-TFA was lower than that for HHexen-TFA. The different bifurcation concentrations are discussed in relation to the surface tension and Fourier transform infrared spectra of the mixtures of camphor and ionic liquids. These results suggest that the interaction between the ionic liquid molecules at the air/water interface is weakened by the addition of camphor molecules and the features of self-propulsion vary due to the change in the driving force.
Collapse
Affiliation(s)
- Er Hua
- Chemical Science and Engineering College, Key Laboratory of Chemical Technology of State Ethnic Affairs Commission, North Minzu University, 204 Wenchang North Street, Xixia District, Yinchuan City, Ningxia 750021, China.
| | - Jun Gao
- Chemical Science and Engineering College, Key Laboratory of Chemical Technology of State Ethnic Affairs Commission, North Minzu University, 204 Wenchang North Street, Xixia District, Yinchuan City, Ningxia 750021, China.
| | - Yu Xu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Chang'an Campus 1 Dongxiang Road, Chang'an District, Xi'an Shaanxi 710129, China
| | - Muneyuki Matsuo
- Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Satoshi Nakata
- Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.
| |
Collapse
|
4
|
Bistervels MH, Hoogendoorn NT, Kamp M, Schoenmaker H, Brouwer AM, Noorduin WL. Light-controlled morphological development of self-organizing bioinspired nanocomposites. NANOSCALE 2024; 16:2310-2317. [PMID: 38230748 PMCID: PMC10832358 DOI: 10.1039/d3nr05828j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/09/2024] [Indexed: 01/18/2024]
Abstract
Nature's intricate biominerals inspire fundamental questions on self-organization and guide innovations towards functional materials. While advances in synthetic self-organization have enabled many levels of control, generating complex shapes remains difficult. Specifically, controlling morphologies during formation at the single micro/nanostructure level is the key challenge. Here, we steer the self-organization of barium carbonate nanocrystals and amorphous silica into complex nanocomposite morphologies by photogeneration of carbon dioxide (CO2) under ultraviolet (UV) light. Using modulations in the UV light intensity, we select the growth mode of the self-organization process inwards or outwards to form helical and coral-like morphologies respectively. The spatiotemporal control over CO2 photogeneration allows formation of different morphologies on pre-assigned locations, switching between different growth modes-to form for instance a coral on top of a helix or vice versa, and subtle sculpting and patterning of the nanocomposites during formation. These findings advance the understanding of these versatile self-organization processes and offer new prospects for tailored designs of functional materials using photochemically driven self-organization.
Collapse
Affiliation(s)
| | | | - Marko Kamp
- AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands.
| | | | - Albert M Brouwer
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam 1090 GD, The Netherlands
| | - Willem L Noorduin
- AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands.
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam 1090 GD, The Netherlands
| |
Collapse
|
5
|
Patel VK, Busupalli B. Light-modulated colour transformation in highly intertwined vertically growing silver tungstate tubes. Phys Chem Chem Phys 2023; 25:30727-30734. [PMID: 37934461 DOI: 10.1039/d3cp04329k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Achieving control over growth kinetics in chemical garden architectures is challenging due to the nonequilibrium conditions. In this study, we demonstrate the vertical growth of silver tungstate chemical garden tubes under both illuminated and dark conditions, a phenomenon not observed in a comparable silver-based system, specifically silver silicate, under light exposure. Physicochemical factors, viz. thermo chemical radius of the tungstate anion, its density-buoyancy relation, the osmotic pressure gradient, and the hydration enthalpy, contributed to the tube appearance in silver tungstate even in light. Tubes grown in light illumination were greyish black, while dark-grown tubes were creamy white, and both tubes appeared twisted and highly intertwined. The colour of the as obtained silver tungstate tubes could be transformed via exposure to light. In the presence of a strong oxidizing agent, the growing tubes retain the original creamy white colour even under illumination. Colour transformation in chemical garden tubes has not yet been observed, and this report could lead the way.
Collapse
Affiliation(s)
- Vipul Kirtikumar Patel
- Department of Chemistry, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar 382426, Gujarat, India.
| | - Balanagulu Busupalli
- Department of Chemistry, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar 382426, Gujarat, India.
| |
Collapse
|
6
|
van der Weijden A, Léonard AS, Noorduin WL. Architected Metal Selenides via Sequential Cation and Anion Exchange on Self-Organizing Nanocomposites. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:2394-2401. [PMID: 37008406 PMCID: PMC10061662 DOI: 10.1021/acs.chemmater.2c03525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/23/2023] [Indexed: 06/19/2023]
Abstract
Shape-preserving conversion reactions have the potential to unlock new routes for self-organization of complex three-dimensional (3D) nanomaterials with advanced functionalities. Specifically, developing such conversion routes toward shape-controlled metal selenides is of interest due to their photocatalytic properties and because these metal selenides can undergo further conversion reactions toward a wide range of other functional chemical compositions. Here, we present a strategy toward metal selenides with controllable 3D architectures using a two-step self-organization/conversion approach. First, we steer the coprecipitation of barium carbonate nanocrystals and silica into nanocomposites with controllable 3D shapes. Second, using a sequential exchange of cations and anions, we completely convert the chemical composition of the nanocrystals into cadmium selenide (CdSe) while preserving the initial shape of the nanocomposites. These architected CdSe structures can undergo further conversion reactions toward other metal selenides, which we demonstrate by developing a shape-preserving cation exchange toward silver selenide. Moreover, our conversion strategy can readily be extended to convert calcium carbonate biominerals into metal selenide semiconductors. Hence, the here-presented self-assembly/conversion strategy opens exciting possibilities toward customizable metal selenides with complex user-defined 3D shapes.
Collapse
Affiliation(s)
| | | | - Willem L. Noorduin
- AMOLF, Science Park 104, Amsterdam 1098 XG, The Netherlands
- Van
‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam 1090 GD, The Netherlands
| |
Collapse
|
7
|
Liu C, Shi Z, Zhu J, Liu C, Liu X, Khan NU, Liu S, Wang X, Wang X, Huang F. Armoring a liposome-integrated tissue factor with sacrificial CaCO 3 to form potent self-propelled hemostats. J Mater Chem B 2023; 11:2778-2788. [PMID: 36891927 DOI: 10.1039/d2tb02140d] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The development of hemostatic materials suitable for diverse emergency scenarios is of paramount significance, and there is growing interest in wound-site delivery of hemostasis-enhancing agents that can leverage the body's inherent mechanisms. Herein we report the design and performance of a biomimetic nanoparticle system enclosing tissue factor (TF), the most potent known blood coagulation trigger, which was reconstituted into liposomes and shielded by the liposome-templated CaCO3 mineralization. The mineral coatings, which mainly comprised water-soluble amorphous and vateritic phases, synergized with the lipidated TF to improve blood coagulation in vitro. These coatings served as sacrificial masks capable of releasing Ca2+ coagulation factors or propelling the TF-liposomes via acid-aided generation of CO2 bubbles while endowing them with high thermostability under dry conditions. In comparison to commercially available hemostatic particles, CaCO3 mineralized TF-liposomes yielded significantly shorter hemostasis times and less blood loss in vivo. When mixed with organic acids, the CO2-generating formulation further improved hemostasis by delivering TF-liposomes deep into actively bleeding wounds with good biocompatibility, as observed in a rat hepatic injury model. Therefore, the designed composite mimicry of coagulatory components exhibited strong hemostatic efficacy, which in combination with the propulsion mechanism would serve as a versatile approach to treating a variety of severe hemorrhages.
Collapse
Affiliation(s)
- Chengkun Liu
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China.
| | - Zhuang Shi
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China.
| | - Jingyan Zhu
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China.
| | - Chang Liu
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China.
| | - Xiaodan Liu
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China.
| | - Naseer Ullah Khan
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China.
| | - Shihai Liu
- Medical Research Center, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266550, China
| | - Xiaojuan Wang
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China.
| | - Xiaoqiang Wang
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China.
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China.
| |
Collapse
|
8
|
Wang Q, Steinbock O. Bobbing chemical garden tubes: oscillatory self-motion from buoyancy and catalytic gas production. SOFT MATTER 2023; 19:2138-2145. [PMID: 36876894 DOI: 10.1039/d2sm01681h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Chemical reactions can induce self-propulsion by the production and ejection of gas bubbles from micro-rocket like cylindrical units. We describe related micro-submarines that change their depth in response to catalytic gas production. The structures consist of silica-supported CuO and are produced by utilizing the self-assembly rules of chemical gardens. In H2O2 solution, the tube cavity produces O2(g) and the resulting buoyancy lifts the tube to the air-solution interface, where it releases oxygen and sinks back down to the bottom of the container. In 5 cm deep solutions, the resulting bobbing cycles have a period of 20-30 s and repeat for several hours. The ascent is characterized by a vertical orientation of the tube and a constant acceleration. During the descent, the tubes are oriented horizontally and sink at a nearly constant speed. These striking features are quantitatively captured by an analysis of the involved mechanical forces and chemical kinetics. The results show that ascending tubes increase their oxygen-production rate by the motion-induced injection of fresh solution into the tube cavity.
Collapse
Affiliation(s)
- Qingpu Wang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA.
| | - Oliver Steinbock
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA.
| |
Collapse
|
9
|
Batista BC, Steinbock O. Perovskite chemical gardens: highly fluorescent microtubes from self-assembly and ion exchange. Chem Commun (Camb) 2022; 58:12736-12739. [DOI: 10.1039/d2cc05611a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the shape-preserving conversion of self-assembled CaCO3 microtubes to PbCO3 and MAPbBr3 perovskite.
Collapse
Affiliation(s)
- Bruno C. Batista
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Oliver Steinbock
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| |
Collapse
|