1
|
Zhang FX, Zhang YH, Wang M, Ma JB. Nitrogen adsorption on Nb 2C 6H 4+ cations: the important role of benzyne ( ortho-C 6H 4). Phys Chem Chem Phys 2024; 26:3912-3919. [PMID: 38230689 DOI: 10.1039/d3cp05524h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
N2 adsorption is a prerequisite for activation and transformation. Time-of-flight mass spectrometry experiments show that the Nb2C6H4+ cation, resulting from the gas-phase reaction of Nb2+ with C6H6, is more favorable for N2 adsorption than Nb+ and Nb2+ cations. Density functional theory calculations reveal the effect of the ortho-C6H4 ligand on N2 adsorption. In Nb2C6H4+, interactions between the Nb-4d and C-2p orbitals enable the Nb2+ cation to form coordination bonds with the ortho-C6H4 ligand. Although the ortho-C6H4 ligand in Nb2C6H4+ is not directly involved in the reaction, its presence increases the polarity of the cluster and brings the highest occupied molecular orbital (HOMO) closer to the lowest occupied molecular orbital (LUMO) of N2, thereby increasing the N2 adsorption energy, which effectively facilitates N2 adsorption and activation. This study provides fundamental insights into the mechanisms of N2 adsorption in "transition metal-organic ligand" systems.
Collapse
Affiliation(s)
- Feng-Xiang Zhang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
| | - Yi-Heng Zhang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
| | - Ming Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
| | - Jia-Bi Ma
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
| |
Collapse
|
2
|
Li ZY, Horn F, Li Y, Mou LH, Schöllkopf W, Chen H, He SG, Asmis KR. Dinitrogen Activation in the Gas Phase: Spectroscopic Characterization of C-N Coupling in the V 3 C + +N 2 Reaction. Chemistry 2023; 29:e202203384. [PMID: 36511849 DOI: 10.1002/chem.202203384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
We report on cluster-mediated C-N bond formation in the gas phase using N2 as a nitrogen source. The V3 C+ +N2 reaction is studied by a combination of ion-trap mass spectrometry with infrared photodissociation (IRPD) spectroscopy and complemented by electronic structure calculations. The proposed reaction mechanism is spectroscopically validated by identifying the structures of the reactant and product ions. V3 C+ exhibits a pyramidal structure of C1 -symmetry. N2 activation is initiated by adsorption in an end-on fashion at a vanadium site, followed by spontaneous cleavage of the N≡N triple bond and subsequent C-N coupling. The IRPD spectrum of the metal nitride product [NV3 (C=N)]+ exhibits characteristic C=N double bond (1530 cm-1 ) and V-N single bond (770, 541 and 522 cm-1 ) stretching bands.
Collapse
Affiliation(s)
- Zi-Yu Li
- State Key Laboratory for Structural Chemistry of, Unstable and Stable Species, Institution of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Francine Horn
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstrasse 2, 04103, Leipzig, Germany.,Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Yao Li
- CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Li-Hui Mou
- State Key Laboratory for Structural Chemistry of, Unstable and Stable Species, Institution of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Wieland Schöllkopf
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Hui Chen
- CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of, Unstable and Stable Species, Institution of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Knut R Asmis
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstrasse 2, 04103, Leipzig, Germany
| |
Collapse
|
3
|
Chen S, Li X, Li H, Chen K, Luo T, Fu J, Liu K, Wang Q, Zhu M, Liu M. Proton Transfer Dynamics-Mediated CO 2 Electroreduction. CHEMSUSCHEM 2023:e202202251. [PMID: 36820747 DOI: 10.1002/cssc.202202251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Electrochemical CO2 reduction reaction (CO2 RR) is crucial to addressing environmental crises and producing chemicals. Proton activation and transfer are essential in CO2 RR. To date, few research reviews have focused on this process and its effect on catalytic performance. Recent studies have demonstrated ways to improve CO2 RR by regulating proton transfer dynamics. This Concept highlights the use of regulating proton transfer dynamics to enhance CO2 RR for the target product and discusses modulation strategies for proton transfer dynamics and operative mechanisms in typical systems, including single-atom catalysts, molecular catalysts, metal heterointerfaces, and organic-ligand modified metal catalysts. Characterization methods for proton transfer dynamics during CO2 RR are also discussed, providing powerful tools for the hydrogen-involving electrochemical study. This Concept offers new insights into the CO2 RR mechanism and guides the design of efficient CO2 RR systems.
Collapse
Affiliation(s)
- Shanyong Chen
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 511443, Guangzhou, P. R. China
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, P. R. China
| | - Xiaoqing Li
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
| | - Hongmei Li
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
| | - Kejun Chen
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
| | - Tao Luo
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
| | - Junwei Fu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
| | - Kang Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
| | - Qiyou Wang
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 511443, Guangzhou, P. R. China
| | - Min Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
| |
Collapse
|
4
|
Zhuo Q, Zhou X, Shima T, Hou Z. Dinitrogen Activation and Addition to Unsaturated C-E (E=C, N, O, S) Bonds Mediated by Transition Metal Complexes. Angew Chem Int Ed Engl 2023; 62:e202218606. [PMID: 36744517 DOI: 10.1002/anie.202218606] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/07/2023]
Abstract
Dinitrogen (N2 ) activation and functionalization is of fundamental interest and practical importance. This review focuses on N2 activation and addition to unsaturated substrates, including carbon monoxide, carbon dioxide, heteroallenes, aldehydes, ketones, acid halides, nitriles, alkynes, and allenes, mediated by transition metal complexes, which afforded a variety of N-C bond formation products. Emphases are placed on the reaction modes and mechanisms. We hope that this work would stimulate further explorations in this challenging field.
Collapse
Affiliation(s)
- Qingde Zhuo
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Xiaoxi Zhou
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takanori Shima
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Zhaomin Hou
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
5
|
Wang YY, Ding XL, Chen Y, Wang MM, Li W, Wang X. Trimetallic clusters in the sumanene bowl for dinitrogen activation. Phys Chem Chem Phys 2022; 24:23265-23278. [PMID: 36156001 DOI: 10.1039/d2cp03346a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is of great importance to find catalysts for the nitrogen reduction reaction (NRR) with high stability and reactivity. A series of M3 clusters (M = Ti, Zr, V, and Nb) supported on sumanene (C21H12) were designed as potential catalysts for the NRR by taking advantage of the high reactivity of trimetallic clusters and the unique geometric and electronic properties of sumanene, a bowl-like organic molecule. Detailed mechanisms of NN bond cleavage on C21H12-M3 were investigated by DFT calculations and compared with those on bare M3 clusters. M3 in the sumanene bowl is very stable with large binding energies, which prohibits the cohesion of M3 into M6. In the bowl, M3 has a (quasi-) equilateral triangle structure with lengthened M-M bonds, which is particularly beneficial to the N2 transfer process on Ti3 and V3 clusters. The N-N bond can be dissociated by both M3 and C21H12-M3 clusters without the overall energy barriers. A blurring effect is found in which some geometric and electronic properties of different metal types become similar when M3 is supported on the substrate. Our work demonstrates that sumanene is a suitable substrate to support M3 in the activation of N2 with enhanced stability and maintained a high level of reactivity compared to bare M3.
Collapse
Affiliation(s)
- Ya-Ya Wang
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China. .,Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China.,School of New Energy, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China
| | - Xun-Lei Ding
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China. .,Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China.,Hebei Key Laboratory of Physics and Energy Technology, North China Electric Power University, Baoding, 071000, China
| | - Yan Chen
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China. .,Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China.,School of New Energy, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China
| | - Meng-Meng Wang
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China. .,Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China.,School of New Energy, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China
| | - Wei Li
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China. .,Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China.,Hebei Key Laboratory of Physics and Energy Technology, North China Electric Power University, Baoding, 071000, China
| | - Xin Wang
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China. .,Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China.,Hebei Key Laboratory of Physics and Energy Technology, North China Electric Power University, Baoding, 071000, China
| |
Collapse
|
6
|
Chaban VV, Andreeva NA. Extensively amino-functionalized graphene captures carbon dioxide. Phys Chem Chem Phys 2022; 24:25801-25815. [DOI: 10.1039/d2cp03235j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Amino-functionalized graphene demonstrates certain potential to fix carbon dioxide.
Collapse
Affiliation(s)
| | - Nadezhda A. Andreeva
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russian Federation
| |
Collapse
|