1
|
Amonov A, Scheiner S. Halogen Bonding to the π-Systems of Polycyclic Aromatics. Chemphyschem 2024; 25:e202400482. [PMID: 38923736 DOI: 10.1002/cphc.202400482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/06/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
The propensity of the π-electron system lying above a polycyclic aromatic system to engage in a halogen bond is examined by DFT calculations. Prototype Lewis acid CF3I is placed above the planes of benzene, naphthalene, anthracene, phenanthrene, naphthacene, chrysene, triphenyl, pyrene, and coronene. The I atom positions itself some 3.3-3.4 Å above the polycyclic plane, and the associated interaction energy is about 4 kcal/mol. This quantity is a little smaller for benzene, but is roughly equal for the larger polycyclics. The energy only oscillates a little as the Lewis acid slides across the face of the polycyclic, preferring regions of higher π-electron density over minima of the electrostatic potential. The binding is dominated by dispersion which contributes half of the total interaction energy.
Collapse
Affiliation(s)
- Akhtam Amonov
- Department of Optics and Spectroscopy, Institute of Engineering Physics Samarkand State University, University blv. 15, 140104, Samarkand, Uzbekistan
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, 84322-0300, USA
| |
Collapse
|
2
|
Xiao M, Liu F, Zhan J, Wang Y, Chen C, Zhou Y, Li Y. Synthesis and performance study of PAM-g-PAA/PHEA and its application in purifying tellurium aerosol. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2023; 270:107289. [PMID: 37683596 DOI: 10.1016/j.jenvrad.2023.107289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/21/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
In this study, grafted polymers (PAM-g-PAA/PHEA) with different grafting rates are prepared by solution method grafting polymer with polyacrylamide as the main chain, acrylic acid (AA) and 2-hydroxyethyl acrylate (HEA) as the modified monomers. Evidence of graft polymerization of AA and HEA on polyacrylamide side chains is obtained by FT-IR and 1HNMR. Scanning electron microscopy and thermogravimetric characterization further confirm the synthesis of grafted polymers. The properties of the grafting polymer are evaluated using grafting rate, viscosity, and surface tension measurements. The performance of polymer aqueous solution as an aerosol fixative for capturing and removing tellurium aerosol as a simulated polonium aerosol is examined. According to the results, grafting two monomers, acrylic acid, and 2-hydroxyethyl acrylate, effectively improve the cross-sectional structure of the polymer, increase the thermal stability of the polymer, and reduced the surface tension of the aqueous polymer solution to 42.47 mN/m. In addition, aerosol settling and fixation experiments showed that PAM-g-PAA/PHEA had a trapping and scavenging effect on tellurium aerosols with an immobilization rate of 94.86%, which revealed the immobilization mechanism of the immobilizer with tellurium aerosols.
Collapse
Affiliation(s)
- Mengqing Xiao
- State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621000, Sichuan, China
| | - Feng Liu
- CGN Research Institute Co. Ltd, Shenzhen, 518000, Guangdong, China
| | - Jie Zhan
- CGN Research Institute Co. Ltd, Shenzhen, 518000, Guangdong, China
| | - Yutuo Wang
- State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621000, Sichuan, China
| | - Changwen Chen
- State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621000, Sichuan, China
| | - Yuanlin Zhou
- State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621000, Sichuan, China
| | - Yintao Li
- State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621000, Sichuan, China.
| |
Collapse
|
3
|
Lei F, Liu Q, Zhong Y, Cui X, Yu J, Hu Z, Feng G, Zeng Z, Lu T. Computational Insight into the Nature and Strength of the π-Hole Type Chalcogen∙∙∙Chalcogen Interactions in the XO 2∙∙∙CH 3YCH 3 Complexes (X = S, Se, Te; Y = O, S, Se, Te). Int J Mol Sci 2023; 24:16193. [PMID: 38003384 PMCID: PMC10671658 DOI: 10.3390/ijms242216193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
In recent years, the non-covalent interactions between chalcogen centers have aroused substantial research interest because of their potential applications in organocatalysis, materials science, drug design, biological systems, crystal engineering, and molecular recognition. However, studies on π-hole-type chalcogen∙∙∙chalcogen interactions are scarcely reported in the literature. Herein, the π-hole-type intermolecular chalcogen∙∙∙chalcogen interactions in the model complexes formed between XO2 (X = S, Se, Te) and CH3YCH3 (Y = O, S, Se, Te) were systematically studied by using quantum chemical computations. The model complexes are stabilized via one primary X∙∙∙Y chalcogen bond (ChB) and the secondary C-H∙∙∙O hydrogen bonds. The binding energies of the studied complexes are in the range of -21.6~-60.4 kJ/mol. The X∙∙∙Y distances are significantly smaller than the sum of the van der Waals radii of the corresponding two atoms. The X∙∙∙Y ChBs in all the studied complexes except for the SO2∙∙∙CH3OCH3 complex are strong in strength and display a partial covalent character revealed by conducting the quantum theory of atoms in molecules (QTAIM), a non-covalent interaction plot (NCIplot), and natural bond orbital (NBO) analyses. The symmetry-adapted perturbation theory (SAPT) analysis discloses that the X∙∙∙Y ChBs are primarily dominated by the electrostatic component.
Collapse
Affiliation(s)
- Fengying Lei
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China; (F.L.); (Q.L.); (Y.Z.); (X.C.); (J.Y.); (Z.H.)
| | - Qingyu Liu
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China; (F.L.); (Q.L.); (Y.Z.); (X.C.); (J.Y.); (Z.H.)
| | - Yeshuang Zhong
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China; (F.L.); (Q.L.); (Y.Z.); (X.C.); (J.Y.); (Z.H.)
| | - Xinai Cui
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China; (F.L.); (Q.L.); (Y.Z.); (X.C.); (J.Y.); (Z.H.)
| | - Jie Yu
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China; (F.L.); (Q.L.); (Y.Z.); (X.C.); (J.Y.); (Z.H.)
| | - Zuquan Hu
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China; (F.L.); (Q.L.); (Y.Z.); (X.C.); (J.Y.); (Z.H.)
| | - Gang Feng
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, Chongqing 401331, China;
| | - Zhu Zeng
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China; (F.L.); (Q.L.); (Y.Z.); (X.C.); (J.Y.); (Z.H.)
| | - Tao Lu
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China; (F.L.); (Q.L.); (Y.Z.); (X.C.); (J.Y.); (Z.H.)
| |
Collapse
|
4
|
Zhutova N, Réal F, Renault E, Vallet V, Maurice R. Excited states of polonium(IV): electron correlation and spin-orbit coupling in the Po 4+ free ion and in the bare and solvated [PoCl 5] - and [PoCl 6] 2- complexes. Phys Chem Chem Phys 2023; 25:24603-24612. [PMID: 37665002 DOI: 10.1039/d3cp03317a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Polonium (Po, Z = 84) is a main-block element with poorly known physico-chemical properties. Not much information has been firmly acquired since its discovery by Marie and Pierre Curie in 1898, especially regarding its speciation in aqueous solution and spectroscopy. In this work, we revisit the absorption properties of two complexes, [PoCl5]- and [PoCl6]2-, using quantum mechanical calculations. These complexes have the potential to exhibit a maximum absorption at 418 nm in HCl medium (for concentrations of 0.5 mol L-1 and above). Initially, we examine the electronic spectra of the Po4+ free ion and of its isoelectronic analogue, Bi3+, in the spin-orbit configuration interaction (SOCI) framework. Our findings demonstrate that the SOCI matrix should be dressed with correlated electronic energies and that the quality of the spectra is largely improved by decontracting the reference states at the complete active space plus singles (CAS + S) level. Subsequently, we investigate the absorption properties of the [PoCl5]- and [PoCl6]2- complexes in two stages. Firstly, we perform methodological tests at the MP2/def2-TZVP gas phase geometries, indicating that the decontraction of the reference states can be skipped without compromising the accuracy significantly. Secondly, we study the solution absorption properties by means of single-point calculations performed at the solvated geometries, obtained by an implicit solvation treatment or a combination of implicit and explicit solvation. Our results highlight the importance of saturating the first coordination sphere of the PoIV ion to obtain a qualitatively correct picture. Finally, we conclude that the known-for-decades 418 nm peak could be attributed to a mixture of both the [PoCl5(H2O)]- and [PoCl6]2- complexes. This finding not only aligns with the behaviour of the analogous BiIII ion under similar conditions but also potentially provides an explanation for previous discrepancies in the literature.
Collapse
Affiliation(s)
- Nadiya Zhutova
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
- Univ. Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers, Atomes et Molécules, F-59000 Lille, France.
| | - Florent Réal
- Univ. Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers, Atomes et Molécules, F-59000 Lille, France.
| | - Eric Renault
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| | - Valérie Vallet
- Univ. Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers, Atomes et Molécules, F-59000 Lille, France.
| | - Rémi Maurice
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| |
Collapse
|
5
|
Lu T, Zhang J, Xu Y, Wang Z, Feng G, Zeng Z. Hydrogen bond interactions between thioethers and amides: A joint rotational spectroscopic and theoretical study of the formamide⋯dimethyl sulfide adduct. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 288:122199. [PMID: 36473293 DOI: 10.1016/j.saa.2022.122199] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/17/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
The rotational spectrum of the binary adduct of formamide (HCONH2) with dimethyl sulfide (DMS) has been investigated employing cavity-based Fourier transform microwave spectroscopy combined with theoretical computations. Experimentally, only one isomer of the adduct was unambiguously observed and assigned according to the theoretically predicted spectroscopic parameters, and its rotational spectrum displays the hyperfine splittings associated with the 14N nuclear quadrupole coupling effect. The observed isomer exhibits Cs symmetry, such that the ∠CSC angle of the DMS subunit is bisected by the ab-plane of the HCONH2 moiety. The two moieties in the detected isomer are connected via one primary NH···S and two secondary CH···O hydrogen bonds. Quantum theory of atoms in molecules (QTAIM), non-covalent interaction (NCI), natural bond orbital (NBO) and symmetry-adapted perturbation theory (SAPT) approaches were utilized for characterizing the intermolecular interactions occurring in the titled adduct. Additionally, the adduct of HCONH2 with dimethyl ether (DME) was also theoretically investigated to compare the difference in structure and energy characteristics between the NH···S and NH···O hydrogen bonds.
Collapse
Affiliation(s)
- Tao Lu
- School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China; School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, Chongqing 401331, China.
| | - Jiaqi Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, Chongqing 401331, China
| | - Yugao Xu
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, Chongqing 401331, China
| | - Zhen Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, Chongqing 401331, China
| | - Gang Feng
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, Chongqing 401331, China
| | - Zhu Zeng
- School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China.
| |
Collapse
|
6
|
Jena S, Routray C, Dutta J, Biswal HS. Hydrogen Bonding Directed Reversal of
13
C NMR Chemical Shielding. Angew Chem Int Ed Engl 2022; 61:e202207521. [DOI: 10.1002/anie.202207521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Indexed: 12/30/2022]
Affiliation(s)
- Subhrakant Jena
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) PO-Bhimpur-Padanpur Via-Jatni, District-Khurda PIN - 752050 Bhubaneswar India
- Homi Bhabha National Institute, Training School Complex Anushakti Nagar Mumbai 400094 India
| | - Chinmay Routray
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) PO-Bhimpur-Padanpur Via-Jatni, District-Khurda PIN - 752050 Bhubaneswar India
- Homi Bhabha National Institute, Training School Complex Anushakti Nagar Mumbai 400094 India
| | - Juhi Dutta
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) PO-Bhimpur-Padanpur Via-Jatni, District-Khurda PIN - 752050 Bhubaneswar India
- Homi Bhabha National Institute, Training School Complex Anushakti Nagar Mumbai 400094 India
| | - Himansu S. Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) PO-Bhimpur-Padanpur Via-Jatni, District-Khurda PIN - 752050 Bhubaneswar India
- Homi Bhabha National Institute, Training School Complex Anushakti Nagar Mumbai 400094 India
| |
Collapse
|
7
|
Jena S, Routray C, Dutta J, Biswal HS. Hydrogen‐Bonding Directed Reversal of 13C NMR Chemical Shielding. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Subhrakant Jena
- National Institute of Science Education and Research School of Chemical Sciences INDIA
| | - Chinmay Routray
- National Institute of Science Education and Research School of Chemical Sciences INDIA
| | - Juhi Dutta
- National Institute of Science Education and Research School of Chemical Sciences INDIA
| | - Himansu Sekhar Biswal
- National Institute of Science Education and Research School of Chemical Sciences Jatani 752050 Bhubaneswar INDIA
| |
Collapse
|