1
|
Pinillos P, Torres-Hernández F, Usabiaga I, Pinacho P, Fernández JA. Exploration of carvacrol aggregation by laser spectroscopy. Phys Chem Chem Phys 2024; 26:24533-24541. [PMID: 39282817 DOI: 10.1039/d4cp02945c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Carvacrol is an aromatic monoterpenoid found in thyme oil. Due to its implications for human health, it is important to elucidate its structure and its intramolecular interactions. We have characterised the carvacrol monomer, its complex with water, its dimer, and even its trimer in a supersonic expansion using mass-resolved laser spectroscopy techniques complemented by quantum-chemical computations. The resonance-enhanced multiphoton ionisation spectrum of the monomer features several transitions, which were assigned to the same conformer, confirmed by ion-dip infrared spectroscopy. However, a conclusive assignment of the infrared bands to one of the four conformations of carvacrol remains elusive. The experimental spectra for the monohydrated, the homodimer, and the homotrimer point to the detection of the lowest energy isomer in each case. Their structures are governed by a balance of intramolecular interactions, specifically hydrogen bonding and dispersion forces. Comparison with other similar systems demonstrates that dispersion interactions are key to the stabilisation of the aggregates, being present in all the structures. However, the hydrogen bonding is the dominant force as observed in the lowest-energy conformations.
Collapse
Affiliation(s)
- Paúl Pinillos
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), B° Sarriena, S/N, Leioa, 48940, Spain.
| | - Fernando Torres-Hernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), B° Sarriena, S/N, Leioa, 48940, Spain.
| | - Imanol Usabiaga
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), B° Sarriena, S/N, Leioa, 48940, Spain.
| | - Pablo Pinacho
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), B° Sarriena, S/N, Leioa, 48940, Spain.
| | - José A Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), B° Sarriena, S/N, Leioa, 48940, Spain.
| |
Collapse
|
2
|
Torres-Hernández F, Pinillos P, Li W, Saragi RT, Camiruaga A, Juanes M, Usabiaga I, Lesarri A, Fernández JA. Competition between O-H and S-H Intermolecular Interactions in Conformationally Complex Systems: The 2-Phenylethanethiol and 2-Phenylethanol Dimers. J Phys Chem Lett 2024; 15:5674-5680. [PMID: 38767855 PMCID: PMC11145646 DOI: 10.1021/acs.jpclett.4c00903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/22/2024]
Abstract
Noncovalent interactions involving sulfur centers play a relevant role in biological and chemical environments. Yet, detailed molecular descriptions are scarce and limited to very simple model systems. Here we explore the formation of the elusive S-H···S hydrogen bond and the competition between S-H···O and O-H···S interactions in pure and mixed dimers of the conformationally flexible molecules 2-phenylethanethiol (PET) and 2-phenylethanol (PEAL), using the isolated and size-controlled environment of a jet expansion. The structure of both PET-PET and PET-PEAL dimers was unraveled through a comprehensive methodology that combined rotationally resolved microwave spectroscopy, mass-resolved isomer-specific infrared laser spectroscopy, and quantum chemical calculations. This synergic experimental-computational approach offered unique insights into the potential energy surface, conformational equilibria, molecular structure, and intermolecular interactions of the dimers. The results show a preferential order for establishing hydrogen bonds following the sequence S-H···S < S-H···O ≲ O-H···S < O-H···O, despite the hydrogen bond only accounting for a fraction of the total interaction energy.
Collapse
Affiliation(s)
- Fernando Torres-Hernández
- Departamento
de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), Barrio Sarriena s/n, Leioa 48940, Spain
| | - Paul Pinillos
- Departamento
de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), Barrio Sarriena s/n, Leioa 48940, Spain
| | - Wenqin Li
- Departamento
de Química Física y Química Inorgánica,
Facultad de Ciencias - I.U. CINQUIMA, Universidad
de Valladolid, Paseo de Belén, 7, E-47011 Valladolid, Spain
| | - Rizalina Tama Saragi
- Departamento
de Química Física y Química Inorgánica,
Facultad de Ciencias - I.U. CINQUIMA, Universidad
de Valladolid, Paseo de Belén, 7, E-47011 Valladolid, Spain
| | - Ander Camiruaga
- Departamento
de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), Barrio Sarriena s/n, Leioa 48940, Spain
| | - Marcos Juanes
- Departamento
de Química Física y Química Inorgánica,
Facultad de Ciencias - I.U. CINQUIMA, Universidad
de Valladolid, Paseo de Belén, 7, E-47011 Valladolid, Spain
| | - Imanol Usabiaga
- Departamento
de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), Barrio Sarriena s/n, Leioa 48940, Spain
| | - Alberto Lesarri
- Departamento
de Química Física y Química Inorgánica,
Facultad de Ciencias - I.U. CINQUIMA, Universidad
de Valladolid, Paseo de Belén, 7, E-47011 Valladolid, Spain
| | - José A. Fernández
- Departamento
de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), Barrio Sarriena s/n, Leioa 48940, Spain
| |
Collapse
|
3
|
Tama Saragi R, Li W, Juanes M, Enríquez L, Pinacho R, Rubio JE, Lesarri A. Rotational Spectroscopy and Conformational Flexibility of 2-Phenylethanethiol: The Dominant S-H⋅⋅⋅π Intramolecular Hydrogen Bond. Chemphyschem 2024; 25:e202300799. [PMID: 38282167 DOI: 10.1002/cphc.202300799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
We present a rotational-computational investigation of the aromatic mercaptan 2-phenylethanethiol, addressing its potential energy surface, conformational equilibrium, internal dynamics and intramolecular interactions. The experiment used broadband chirped-pulse Fourier transform microwave spectroscopy in a supersonic jet expansion, recording the rotational spectrum in the 2-8 GHz frequency region. Two different conformers were detected in the spectrum. The most intense transitions correspond to a skew (gauche-gauche) conformation, identified as the global minimum. The spectra of ten different isotopologues were assigned for this species, leading to accurate effective and substitution structures. The weaker spectrum presents small tunnelling doublings caused by the torsional motion of the thiol group, which are only compatible with an antiperiplanar skeleton and a gauche thiol. The larger stability of the global minimum is attributed to an intramolecular S-H⋅⋅⋅π weak hydrogen bond. A comparison of the intramolecular interactions in the title molecule and 2-phenylethanol, similarly stabilized by a O-H⋅⋅⋅π hydrogen bond, shows the different strength of these interactions. Density functional (B3LYP-D3, B2PLYP-D3) and ab initio (MP2) calculations were conducted for the molecule.
Collapse
Affiliation(s)
- Rizalina Tama Saragi
- Departamento de Química Física y Química Inorgánica -, I.U. CINQUIMA, Facultad de Ciencias, Universidad de Valladolid, Paseo de Belén 7, 47011, Valladolid, Spain
- Present address: Institut für Ionenphysik und Angewandte Chemie, Universität Innsbruck, Technikerstr. 25/4. OG, 6020, Innsbruck, Austria
| | - Wenqin Li
- Departamento de Química Física y Química Inorgánica -, I.U. CINQUIMA, Facultad de Ciencias, Universidad de Valladolid, Paseo de Belén 7, 47011, Valladolid, Spain
| | - Marcos Juanes
- Departamento de Química Física y Química Inorgánica -, I.U. CINQUIMA, Facultad de Ciencias, Universidad de Valladolid, Paseo de Belén 7, 47011, Valladolid, Spain
| | - Lourdes Enríquez
- Departamento de Electrónica, ETSIT, Universidad de Valladolid, Paseo de Belén 11, 47011, Valladolid, Spain
| | - Ruth Pinacho
- Departamento de Electrónica, ETSIT, Universidad de Valladolid, Paseo de Belén 11, 47011, Valladolid, Spain
| | - José Emiliano Rubio
- Departamento de Electrónica, ETSIT, Universidad de Valladolid, Paseo de Belén 11, 47011, Valladolid, Spain
| | - Alberto Lesarri
- Departamento de Química Física y Química Inorgánica -, I.U. CINQUIMA, Facultad de Ciencias, Universidad de Valladolid, Paseo de Belén 7, 47011, Valladolid, Spain
| |
Collapse
|
4
|
Vang ZP, Sonstrom RE, Scolati HN, Clark JR, Pate BH. Assignment of the absolute configuration of molecules that are chiral by virtue of deuterium substitution using chiral tag molecular rotational resonance spectroscopy. Chirality 2023; 35:856-883. [PMID: 37277968 PMCID: PMC11102577 DOI: 10.1002/chir.23596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 06/07/2023]
Abstract
Chiral tag molecular rotational resonance (MRR) spectroscopy is used to assign the absolute configuration of molecules that are chiral by virtue of deuterium substitution. Interest in the improved performance of deuterated active pharmaceutical ingredients has led to the development of precision deuteration reactions. These reactions often generate enantioisotopomer reaction products that pose challenges for chiral analysis. Chiral tag rotational spectroscopy uses noncovalent derivatization of the enantioisotopomer to create the diastereomers of the 1:1 molecular complexes of the analyte and a small, chiral molecule. Assignment of the absolute configuration requires high-confidence determinations of the structures of these weakly bound complexes. A general search method, CREST, is used to identify candidate geometries. Subsequent geometry optimization using dispersion corrected density functional theory gives equilibrium geometries with sufficient accuracy to identify the isomers of the chiral tag complexes produced in the pulsed jet expansion used to introduce the sample into the MRR spectrometer. Rotational constant scaling based on the fact that the diastereomers have the same equilibrium geometry gives accurate predictions allowing identification of the homochiral and heterochiral tag complexes and, therefore, assignment of absolute configuration. The method is successfully applied to three oxygenated substrates from enantioselective Cu-catalyzed alkene transfer hydrodeuteration reaction chemistry.
Collapse
Affiliation(s)
- Zoua Pa Vang
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin, USA
| | - Reilly E. Sonstrom
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
- BrightSpec Inc, Charlottesville, Virginia, USA
| | - Haley N. Scolati
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Joseph R. Clark
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin, USA
| | - Brooks H. Pate
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|