• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4642360)   Today's Articles (1507)   Subscriber (50478)
For: Zaverkin V, Holzmüller D, Bonfirraro L, Kästner J. Transfer learning for chemically accurate interatomic neural network potentials. Phys Chem Chem Phys 2023;25:5383-5396. [PMID: 36748821 DOI: 10.1039/d2cp05793j] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Number Cited by Other Article(s)
1
Watanabe N, Hori Y, Sugisawa H, Ida T, Shoji M, Shigeta Y. A machine learning potential construction based on radial distribution function sampling. J Comput Chem 2024. [PMID: 39225311 DOI: 10.1002/jcc.27497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
2
Faraji S, Liu M. Transferable machine learning interatomic potential for carbon hydrogen systems. Phys Chem Chem Phys 2024;26:22346-22358. [PMID: 39140158 DOI: 10.1039/d4cp02300e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
3
Kahle L, Minisini B, Bui T, First JT, Buda C, Goldman T, Wimmer E. A dual-cutoff machine-learned potential for condensed organic systems obtained via uncertainty-guided active learning. Phys Chem Chem Phys 2024;26:22665-22680. [PMID: 39158948 DOI: 10.1039/d4cp01980f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
4
Fisher KE, Herbst MF, Marzouk YM. Multitask methods for predicting molecular properties from heterogeneous data. J Chem Phys 2024;161:014114. [PMID: 38958501 DOI: 10.1063/5.0201681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/12/2024] [Indexed: 07/04/2024]  Open
5
Yao S, Song J, Jia L, Cheng L, Zhong Z, Song M, Feng Z. Fast and effective molecular property prediction with transferability map. Commun Chem 2024;7:85. [PMID: 38632308 PMCID: PMC11024153 DOI: 10.1038/s42004-024-01169-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 04/05/2024] [Indexed: 04/19/2024]  Open
6
Dral PO. AI in computational chemistry through the lens of a decade-long journey. Chem Commun (Camb) 2024;60:3240-3258. [PMID: 38444290 DOI: 10.1039/d4cc00010b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
7
Martí C, Devereux C, Najm HN, Zádor J. Evaluation of Rate Coefficients in the Gas Phase Using Machine-Learned Potentials. J Phys Chem A 2024. [PMID: 38427974 DOI: 10.1021/acs.jpca.3c07872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
8
Hedelius BE, Tingey D, Della Corte D. TrIP─Transformer Interatomic Potential Predicts Realistic Energy Surface Using Physical Bias. J Chem Theory Comput 2024;20:199-211. [PMID: 38150692 DOI: 10.1021/acs.jctc.3c00936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
9
Vita JA, Fuemmeler EG, Gupta A, Wolfe GP, Tao AQ, Elliott RS, Martiniani S, Tadmor EB. ColabFit exchange: Open-access datasets for data-driven interatomic potentials. J Chem Phys 2023;159:154802. [PMID: 37861121 DOI: 10.1063/5.0163882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023]  Open
10
Kovács DP, Batatia I, Arany ES, Csányi G. Evaluation of the MACE force field architecture: From medicinal chemistry to materials science. J Chem Phys 2023;159:044118. [PMID: 37522405 DOI: 10.1063/5.0155322] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023]  Open
11
Li C, Gilbert B, Farrell S, Zarzycki P. Rapid Prediction of a Liquid Structure from a Single Molecular Configuration Using Deep Learning. J Chem Inf Model 2023. [PMID: 37307434 DOI: 10.1021/acs.jcim.3c00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA