1
|
Dong L, Zhong B, Zhang YS, Yang JD, Cheng JP. Phosphination of aryl/alkyl bromides via Mn-mediated reductive C-P coupling. Chem Commun (Camb) 2024; 60:12549-12552. [PMID: 39380453 DOI: 10.1039/d4cc04750h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Mn-mediated reductive cross-coupling of organic bromides with 2-bromo-1,3,2-diazaphospholene was developed for efficient construction of C-P bonds under mild conditions. Mechanistic studies suggested that bromides are activated by in situ formed bis-diazaphospholene via hybrid radical and polar mechanisms.
Collapse
Affiliation(s)
- Likun Dong
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Bing Zhong
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Yu-Shan Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Jin-Dong Yang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Jin-Pei Cheng
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
2
|
Calogero F, Wilczek L, Pinosa E, Gualandi A, Dorta R, Herrera A, Dai Y, Rossignol A, Negri F, Ziani Z, Fermi A, Ceroni P, Cozzi PG. Stable Meisenheimer Complexes as Powerful Photoreductants Readily Obtained from Aza-Hetero Aromatic Compounds. Angew Chem Int Ed Engl 2024; 63:e202411074. [PMID: 39078744 DOI: 10.1002/anie.202411074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Indexed: 10/25/2024]
Abstract
Excited states of radical anions derived from the photoreduction of stable organic molecules are suggested to serve as potent reductants. However, excited states of these species are too short-lived to allow bimolecular quenching processes. Recently, the singlet excited state of Meisenheimer complexes, which possess a long-lived excited state, was identified as the competent species for the reduction of challenging organic substrates (-2.63 V vs. SCE, saturated calomel electrode). To produce reasonably stable and simply accessible different Meisenheimer complexes, the addition of nBuLi to readily available aromatic heterocycles was investigated, and the photoreactivity of the generated species was studied. In this paper, we present the straightforward preparation of a family of powerful photoreductants (*Eox<-3 V vs. SCE in their excited states, determined by DFT and time-dependent TD-DFT calculations; DFT, density functional theory) that can induce dehalogenation of electron-rich aryl chlorides and to form C-C bond through radical cyclization. Photophysical analyses and computational studies in combination with experimental mechanistic investigations demonstrate the ability of the adduct to act as a strong electron donor under visible light irradiation.
Collapse
Affiliation(s)
- Francesco Calogero
- Dipartimento di Chimica "Giacomo Ciamician" Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
- Center for Chemical Catalysis-C3 Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
| | - Leonie Wilczek
- Dipartimento di Chimica "Giacomo Ciamician" Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
- Institute of Organic Chemistry, University of Cologne, Greinstraße 4, 50939, Köln, Germany
| | - Emanuele Pinosa
- Dipartimento di Chimica "Giacomo Ciamician" Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
- Center for Chemical Catalysis-C3 Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
| | - Andrea Gualandi
- Dipartimento di Chimica "Giacomo Ciamician" Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
- Center for Chemical Catalysis-C3 Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
| | - Romano Dorta
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität, Egerlandstr. 1, 91058, Erlangen, Germany
| | - Alberto Herrera
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität, Egerlandstr. 1, 91058, Erlangen, Germany
| | - Yasi Dai
- Dipartimento di Chimica "Giacomo Ciamician" Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
- Center for Chemical Catalysis-C3 Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
| | - Arthur Rossignol
- Dipartimento di Chimica "Giacomo Ciamician" Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
| | - Fabrizia Negri
- Dipartimento di Chimica "Giacomo Ciamician" Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
- Center for Chemical Catalysis-C3 Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
| | - Zakaria Ziani
- Dipartimento di Chimica "Giacomo Ciamician" Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
| | - Andrea Fermi
- Dipartimento di Chimica "Giacomo Ciamician" Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
- Center for Chemical Catalysis-C3 Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
| | - Paola Ceroni
- Dipartimento di Chimica "Giacomo Ciamician" Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
- Center for Chemical Catalysis-C3 Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
| | - Pier Giorgio Cozzi
- Dipartimento di Chimica "Giacomo Ciamician" Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
- Center for Chemical Catalysis-C3 Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
| |
Collapse
|
3
|
Liu WD, Gao J, Mo JN, Zhou Y, Zhao J. Cooperative NHC and Photoredox Catalyzed Radical Aminoacylation of Alkenes to Tetrahydropyridazines. Chemistry 2024; 30:e202402288. [PMID: 39072808 DOI: 10.1002/chem.202402288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
Tetrahydropyridazines constitute an important structural motif found in numerous natural products and pharmaceutical compounds. Herein, we report an aminoacylation reaction of alkenes that enables the synthesis of 1,4,5,6-tetrahydropyridazines through cooperative N-heterocyclic carbene (NHC) and photoredox catalysis. This approach involves the 6-endo-trig cyclization of N-centered hydrazonyl radicals, generated via single-electron oxidation of hydrazones, followed by a radical-radical coupling step. The mild process tolerates a wide range of common functional groups and affords a variety of tetrahydropyridazines in moderate to high yields. Preliminary investigations using chiral NHC catalysts demonstrate the potential of this protocol for asymmetric radical reactions.
Collapse
Affiliation(s)
- Wen-Deng Liu
- School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Jiyuan Gao
- School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Jia-Nan Mo
- School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Jiannan Zhao
- School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
4
|
Singh P, König B, Shaikh AC. Electro-photochemical Functionalization of C(sp 3)-H bonds: Synthesis toward Sustainability. JACS AU 2024; 4:3340-3357. [PMID: 39328771 PMCID: PMC11423327 DOI: 10.1021/jacsau.4c00496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024]
Abstract
Over the past several decades, there has been a surge of interest in harnessing the functionalization of C(sp3)-H bonds due to their promising applications across various domains. Yet, traditional methodologies have heavily leaned on stoichiometric quantities of costly and often environmentally harmful metal oxidants, posing sustainability challenges for C-H activation chemistry at large. In stark contrast, the emergence of electro-photocatalytic-driven C(sp3)-H bond activation presents a transformative alternative. This approach offers a viable route for forging carbon-carbon and carbon-heteroatom bonds. It stands out by directly engaging inert C(sp3)-H bonds, prevalent in organic compounds, without the necessity for prefunctionalization or harsh reaction conditions. Such methodology simplifies the synthesis of intricate organic compounds and facilitates the creation of novel chemical architectures with remarkable efficiency and precision. This review aims to shed light on the notable strides achieved in recent years in the realm of C(sp3)-H bond functionalization through organic electro-photochemistry.
Collapse
Affiliation(s)
- Puja Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab-140001, India
| | - Burkhard König
- Institute of Organic Chemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Aslam C Shaikh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab-140001, India
| |
Collapse
|
5
|
Niu KK, Bi YS, Liu H, Xing LB. Perylene-Diimide-Based Supramolecular Radical Anion as a Platform for Highly Effective Photoreduction of Inert Sulfoxide to Sulfide. Org Lett 2024; 26:7987-7992. [PMID: 39255467 DOI: 10.1021/acs.orglett.4c03005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Due to the limitations of common photoredox catalysts, unlocking their applications in photoreduction reactions remains an ongoing challenge. We herein present a supramolecular radical anion, PDI(CB[7])2, that formed by the assembly of perylene diimide derivative (PDI) and cucurbit[7]uril (CB[7]) via a host-guest interaction for an effective photoreduction reaction. Studies revealed that it could effectively accomplish a consecutive excitation process by two-photon excitation, enabling a potent photoreductant PDI(CB[7])2• - * that can even reduce the inert feedstocks, such as sulfoxides to sulfides. Mechanistic investigations indicate that, besides exceptional photophysical properties, supramolecular PDI(CB[7])2 also significantly enhances the lifetime and robustness of the in situ generated higher energy photoreductant PDI(CB[7])2• - * upon second quantum photon excitation, leading to the observed highly active photoreducing behavior.
Collapse
Affiliation(s)
- Kai-Kai Niu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, People's Republic of China
| | - Yu-Song Bi
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, People's Republic of China
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, People's Republic of China
| | - Ling-Bao Xing
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, People's Republic of China
| |
Collapse
|
6
|
Ye Y, Huo C. (2 + 2 + 1)-Cyclization of Glycine Derivatives with Alkenes and CO 2. Org Lett 2024; 26:7897-7901. [PMID: 39237498 DOI: 10.1021/acs.orglett.4c02805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
A highly atom-economic (2 + 2 + 1)-cyclization of glycine derivatives with alkenes and CO2 facilitated by visible light catalysis is described. A range of multisubstituted pyrrolidones were synthesized under simple and mild reaction conditions. A reasonable mechanism involving redox-neutral radical-polar crossover is proposed.
Collapse
Affiliation(s)
- Youwan Ye
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials; Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Congde Huo
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials; Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| |
Collapse
|
7
|
Ye Y, Zhang X, Kong P, Yuan Y, Zhao X, Huo C. Radical-polar crossover reaction of glycine derivatives. Chem Commun (Camb) 2024; 60:10378-10381. [PMID: 39221664 DOI: 10.1039/d4cc02939a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Here we report a visible-light facilitated radical addition strategy for the preparation of various natural or unnatural α-amino acids from readily available glycine derivatives and alkenes. A key aspect in achieving this side carbon chain introduction reaction, while circumventing the well-documented cyclization pathway, was the employment of a radical-polar crossover strategy under redox neutral conditions.
Collapse
Affiliation(s)
- Youwan Ye
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China.
| | - Xin Zhang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China.
| | - Peng Kong
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China.
| | - Yong Yuan
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China.
| | - Xiaolong Zhao
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China.
| | - Congde Huo
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China.
| |
Collapse
|
8
|
Mondal S, Ghosh S, Hajra A. Visible-light-induced redox-neutral difunctionalization of alkenes and alkynes. Chem Commun (Camb) 2024; 60:9659-9691. [PMID: 39129429 DOI: 10.1039/d4cc03552f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The twelve principles of green chemistry illuminate the pathway in the direction of sustainable and eco-friendly synthesis, marking a fundamental shift in synthetic organic chemistry paradigms. In this realm, harnessing the power of visible light for the difunctionalization of various skeletons without employing any external oxidant or reductant, specifically termed as redox-neutral difunctionalization, has attracted tremendous interest from synthetic organic chemists due to its low cost, easy availability and environmentally friendly nature in contrast to traditional metal-catalyzed difunctionalizations. This review presents an overview of recent updates on visible-light-induced redox-neutral difunctionalization reactions with literature coverage up to May 2024.
Collapse
Affiliation(s)
- Susmita Mondal
- Central Ayurvedic Research Institute, 4-CN Block, Bidhannagar, Kolkata, 700091, West Bengal, India
| | - Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| |
Collapse
|
9
|
Zhong P, Yang M, Liu K, He W, Liu JB. Visible-Light-Driven Method for the Selective Synthesis of Amides and N-Acylureas from Carboxylic Acids and Thioureas. Chemistry 2024:e202402677. [PMID: 39158858 DOI: 10.1002/chem.202402677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 08/20/2024]
Abstract
In this work, we developed a visible-light-driven method for the selective synthesis of amides and N-acylureas from carboxylic acids and thioureas. This protocol was featured as avoidance of additional oxidants and transition metal catalysts, simple manipulations, low cost, broad substrate scope, and good functional group tolerance. As only oxygen serves as the oxidation reagent, this method provides a promising synthesis candidate for the formation of N-aryl amides and N-acylureas, including late-stage functionalization of complex pharmaceutical molecules and biologically active molecules.
Collapse
Affiliation(s)
- Pinyong Zhong
- Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Min Yang
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Kunming Liu
- Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Weimin He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Jin-Biao Liu
- Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| |
Collapse
|
10
|
Kim S, Kim H. Cu-Electrocatalysis Enables Vicinal Bis(difluoromethylation) of Alkenes: Unraveling Dichotomous Role of Zn(CF 2H) 2(DMPU) 2 as Both Radical and Anion Source. J Am Chem Soc 2024; 146:22498-22508. [PMID: 39079933 DOI: 10.1021/jacs.4c06207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The difluoromethyl group (CF2H) serves as an essential bioisostere in drug discovery campaigns according to Lipinski's Rule of 5 due to its advantageous combination of lipophilicity and hydrogen bonding ability, thereby improving the ADME properties. However, despite the high prevalence and importance of vicinal hydrogen bond donors in pharmaceutical agents, a general synthetic method for doubly difluoromethylated compounds in the vicinal position is absent. Here we describe a copper-electrocatalyzed strategy that enables the vicinal bis(difluoromethylation) of alkenes. By leveraging electrochemistry to oxidize Zn(CF2H)2(DMPU)2-a conventionally utilized anionic transmetalating source, we paved a way to utilize it as a CF2H radical source to deliver the CF2H group in the terminal position of alkenes. Mechanistic studies revealed that the interception of the resultant secondary radical by a copper catalyst and subsequent reductive elimination is facilitated by invoking the Cu(III) intermediate, enabling the second installation of the CF2H group in the internal position. The utility of this electrocatalytic 1,2-bis(difluoromethylation) strategy has been highlighted through the late-stage bioisosteric replacement of pharmaceutical agents such as sotalol and dipivefrine.
Collapse
Affiliation(s)
- Seonyoung Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyunwoo Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
11
|
Liu DH, Ma J. Recent Advances in Dearomative Partial Reduction of Benzenoid Arenes. Angew Chem Int Ed Engl 2024; 63:e202402819. [PMID: 38480464 DOI: 10.1002/anie.202402819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Indexed: 04/11/2024]
Abstract
Dearomative partial reduction is an extraordinary approach for transforming benzenoid arenes and has been well-known for many decades, as exemplified by the dehydrogenation of Birch reduction and the hydroarylation of Crich addition. Despite its remarkable importance in synthesis, this field has experienced slow progress over the last half-century. However, a revival has been observed with the recent introduction of electrochemical and photochemical methods. In this Minireview, we summarize the recent advancements in dearomative partial reduction of benzenoid arenes, including dihydrogenation, hydroalkylation, arylation, alkenylation, amination, borylation and others. Further, the intriguing utilization of dearomative partial reduction in the synthesis of natural products is also emphasized. It is anticipated that this Minireview will stimulate further progress in arene dearomative transformations.
Collapse
Affiliation(s)
- De-Hai Liu
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jiajia Ma
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
12
|
Xiao ZL, Xie ZZ, Yuan CP, Deng KY, Chen K, Chen HB, Xiang HY, Yang H. Photosensitized 1,2-Difunctionalization of Alkenes to Access β-Amino Sulfonamides. Org Lett 2024; 26:2108-2113. [PMID: 38440974 DOI: 10.1021/acs.orglett.4c00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
A metal-free photosensitized 1,2-imino-sulfamoylation of olefins by employing a tailor-made sulfamoyl carbamate as the difunctionalization reagent has been established. This protocol exhibits versatility across a broad substrate scope, including aryl and aliphatic alkenes, leading to the synthesis of diverse β-imino sulfonamides in moderate to good yields. This method is characterized by its metal-free reaction system, mild reaction conditions, excellent regioselectivity, and high atom economy, serving as a promising platform for the preparation of β-amino sulfonamide-containing molecules, particularly in the context of drug discovery.
Collapse
Affiliation(s)
- Ze-Long Xiao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Zhen-Zhen Xie
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Chu-Ping Yuan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Ke-Yi Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Xiangjiang Laboratory, Changsha 410205, China
| | - Hong-Bin Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Jiangxi Time Chemical Company, Ltd., C Park of Jinxi Xiangliao Industry, Fuzhou 344800, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Xiangjiang Laboratory, Changsha 410205, China
| |
Collapse
|