1
|
Dupont J, Leal BC, Lozano P, Monteiro AL, Migowski P, Scholten JD. Ionic Liquids in Metal, Photo-, Electro-, and (Bio) Catalysis. Chem Rev 2024; 124:5227-5420. [PMID: 38661578 DOI: 10.1021/acs.chemrev.3c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Ionic liquids (ILs) have unique physicochemical properties that make them advantageous for catalysis, such as low vapor pressure, non-flammability, high thermal and chemical stabilities, and the ability to enhance the activity and stability of (bio)catalysts. ILs can improve the efficiency, selectivity, and sustainability of bio(transformations) by acting as activators of enzymes, selectively dissolving substrates and products, and reducing toxicity. They can also be recycled and reused multiple times without losing their effectiveness. ILs based on imidazolium cation are preferred for structural organization aspects, with a semiorganized layer surrounding the catalyst. ILs act as a container, providing a confined space that allows modulation of electronic and geometric effects, miscibility of reactants and products, and residence time of species. ILs can stabilize ionic and radical species and control the catalytic activity of dynamic processes. Supported IL phase (SILP) derivatives and polymeric ILs (PILs) are good options for molecular engineering of greener catalytic processes. The major factors governing metal, photo-, electro-, and biocatalysts in ILs are discussed in detail based on the vast literature available over the past two and a half decades. Catalytic reactions, ranging from hydrogenation and cross-coupling to oxidations, promoted by homogeneous and heterogeneous catalysts in both single and multiphase conditions, are extensively reviewed and discussed considering the knowledge accumulated until now.
Collapse
Affiliation(s)
- Jairton Dupont
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Bárbara C Leal
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Adriano L Monteiro
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Migowski
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Jackson D Scholten
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| |
Collapse
|
2
|
Modak A, Gill D, Sharma K, Bhasin V, Pant KK, Jha SN, Bhattacharyya D, Bhattacharya S. Facile Hydrogenolysis of Sugars to 1,2-Glycols by Ru@PPh 3/OPPh 3 Confined Large-Pore Mesoporous Silica. J Phys Chem Lett 2023; 14:10832-10846. [PMID: 38029290 DOI: 10.1021/acs.jpclett.3c02740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Tandem hydrogenation vis-à-vis hydrogenolysis of xylose to 1,2-glycols remains a major challenge. Although one-pot conversion of xylose to 1,2-glycols requires stringent conditions, a sustainable approach would be quite noteworthy. We have developed a microwave route for the one-pot conversion of pentose (C5) and hexose (C6) sugars into glycol and hexitol, without pressurized hydrogen reactors. A pronounced hydrogenolysis of sugars to glycols is observed by Ru single atom (SA) on triphenylphosphine/phosphine oxide-modified silica (Ru@SiP), in contrast to Ru SA on pristine (Ru@SiC) and 3-aminopropyl-modified silica (Ru@SiN). A promising "ligand effect" was observed through phosphine modification of silica that presents a 70% overall yield of all reduced sugars (xylitol + glycols) from a 99% conversion of xylose with Ru@SiP. A theoretical study by DFT depicts an electronic effect on Ru-SA by triphenylphosphine that promotes the catalytic hydrogenolysis of sugars under mild conditions. Hence, this research represents an important step for glycols from biomass-derived sources.
Collapse
Affiliation(s)
- Arindam Modak
- Department of Chemical Engineering, Catalytic Reaction Engineering Lab, Indian Institute of Technology, Delhi (IITD), Delhi 110016, India
- Amity Institute of Applied Science (AIAS), Amity University, Sector 125, Noida, Uttar Pradesh 201313, India
| | - Deepika Gill
- Department of Physics, Indian Institute of Technology, Delhi (IITD), Delhi 110016, India
| | - Komal Sharma
- Department of Chemical Engineering, Catalytic Reaction Engineering Lab, Indian Institute of Technology, Delhi (IITD), Delhi 110016, India
| | - Vidha Bhasin
- Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400 094, India
| | - Kamal K Pant
- Department of Chemical Engineering, Catalytic Reaction Engineering Lab, Indian Institute of Technology, Delhi (IITD), Delhi 110016, India
| | - S N Jha
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai 400 094, India
| | - Dibyendu Bhattacharyya
- Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400 094, India
| | - Saswata Bhattacharya
- Department of Physics, Indian Institute of Technology, Delhi (IITD), Delhi 110016, India
| |
Collapse
|
3
|
Seyedi N, Nazemi‐Nasyrmahale L, Shirini F, Tajik H. Highly Selective Reduction of Carbonyl Compounds and
O
‐Acetylation of Arylalcohols in the Presence of a Nickel Ion‐Containing 1,4‐Diazabicyclo[2.2.2]octane (DABCO)‐Based Ionic Liquid. ChemistrySelect 2023. [DOI: 10.1002/slct.202204306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Narges Seyedi
- Department of Chemistry College of Science University of Guilan Rasht 41335-19141 Iran
| | | | - Farhad Shirini
- Department of Chemistry College of Science University of Guilan Rasht 41335-19141 Iran
| | - Hassan Tajik
- Department of Chemistry College of Science University of Guilan Rasht 41335-19141 Iran
| |
Collapse
|
4
|
Paterson R, Alharbi AA, Wills C, Dixon C, Šiller L, Chamberlain TW, Griffiths A, Collins SM, Wu K, Simmons MD, Bourne RA, Lovelock KR, Seymour J, Knight JG, Doherty S. Heteroatom modified polymer immobilized ionic liquid stabilized ruthenium nanoparticles: Efficient catalysts for the hydrolytic evolution of hydrogen from sodium borohydride. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|