1
|
Ji K, Liu Y, Wang Y, Kong K, Li J, Liu X, Duan H. Steering Selectivity in Electrocatalytic Furfural Reduction via Electrode-Electrolyte Interface Modification. J Am Chem Soc 2024; 146:11876-11886. [PMID: 38626315 DOI: 10.1021/jacs.4c00818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Electrocatalytic reduction of biomass-derived furfural (FF) represents a sustainable route to produce furfuryl alcohol (FA) and 2-methylfuran (MF) as a value-added chemical and a biofuel, respectively. However, achieving high selectivity for MF as well as tuning the selectivity between FA and MF within one reaction system remain challenging. Herein, we have reported an electrode-electrolyte interface modification strategy, enabling FA and MF selectivity steering under the same reaction conditions. Specifically, by modifying copper (Cu) electrocatalysts with butyl trimethylammonium bromide (BTAB), we achieved a dramatic shift in selectivity from producing FA (selectivity: 83.8%; Faradaic efficiency, FE: 68.9%) to MF (selectivity: 80.1%; FE: 74.8%). We demonstrated that BTAB adsorption over Cu modulates the electrical double layer (EDL) structure, which repels interfacial water and weakens the hydrogen-bond (H-bond) network for proton transfer, thus impeding FF-to-FA conversion by suppression of the hydrogen atom transfer (HAT) process. On the contrary, FF-to-MF conversion was less affected. This work shows the potential of engineering of the electrode-electrolyte interface for selectivity control in electrocatalysis.
Collapse
Affiliation(s)
- Kaiyue Ji
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuanbo Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ye Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Kejian Kong
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jing Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiang Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Haohong Duan
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- Qingyuan Innovation Laboratory, Quanzhou 362801, China
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Zheng M, Zhang J, Wang P, Jin H, Zheng Y, Qiao SZ. Recent Advances in Electrocatalytic Hydrogenation Reactions on Copper-Based Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307913. [PMID: 37756435 DOI: 10.1002/adma.202307913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/14/2023] [Indexed: 09/29/2023]
Abstract
Hydrogenation reactions play a critical role in the synthesis of value-added products within the chemical industry. Electrocatalytic hydrogenation (ECH) using water as the hydrogen source has emerged as an alternative to conventional thermocatalytic processes for sustainable and decentralized chemical synthesis under mild conditions. Among the various ECH catalysts, copper-based (Cu-based) nanomaterials are promising candidates due to their earth-abundance, unique electronic structure, versatility, and high activity/selectivity. Herein, recent advances in the application of Cu-based catalysts in ECH reactions for the upgrading of valuable chemicals are systematically analyzed. The unique properties of Cu-based catalysts in ECH are initially introduced, followed by design strategies to enhance their activity and selectivity. Then, typical ECH reactions on Cu-based catalysts are presented in detail, including carbon dioxide reduction for multicarbon generation, alkyne-to-alkene conversion, selective aldehyde conversion, ammonia production from nitrogen-containing substances, and amine production from organic nitrogen compounds. In these catalysts, the role of catalyst composition and nanostructures toward different products is focused. The co-hydrogenation of two substrates (e.g., CO2 and NOx n, SO3 2-, etc.) via C─N, C─S, and C─C cross-coupling reactions are also highlighted. Finally, the critical issues and future perspectives of Cu-catalyzed ECH are proposed to accelerate the rational development of next-generation catalysts.
Collapse
Affiliation(s)
- Min Zheng
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Junyu Zhang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Pengtang Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Huanyu Jin
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Yao Zheng
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Shi-Zhang Qiao
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
3
|
Zheng Y, Wang Z, Chen P, Zhang W, Gao Q. Roughness-Dependent Electro-Reductive Coupling of Nitrobenzenes and Aldehydes on Copper Electrodes. CHEMSUSCHEM 2023:e202300180. [PMID: 36988187 DOI: 10.1002/cssc.202300180] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 05/28/2023]
Abstract
The electro-reductive coupling of nitro and carbonyl compounds enables a facile, environmentally friendly and energy benign transformation toward value-added nitrones or imines, but the selectivity is still challenging. Here, the surface roughness of Cu electrodes is introduced for the first time as the determinant to switch products from nitrones to imines owing to the controllable reduction of nitroarenes to hydroxylamines or amines on tailored CuI /Cu0 interfaces. The roughness-dependent selectivity, that is the decrease of nitrones and the increase of imines with enhanced roughness, is visible in the electro-reductive coupling of nitrobenzene and furfural. Thus, the high selectivity of nitrone (98 %) and imine (80 %) can be achieved on a surface smooth Cu foil and the one electrochemically roughened in the presence of I- , respectively. Such roughness-dependence of nitrone/imine selectivity on Cu electrodes is further verified in a wide substrate scope, highlighting the promise of surface/interfacial engineering for electrochemical synthesis.
Collapse
Affiliation(s)
- Yinjian Zheng
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, No. 601, Huangpu Avenue West, Guangzhou, 510632, P. R. China
| | - Zhiyuan Wang
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, No. 601, Huangpu Avenue West, Guangzhou, 510632, P. R. China
| | - Peng Chen
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, No. 601, Huangpu Avenue West, Guangzhou, 510632, P. R. China
| | - Wenbiao Zhang
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, No. 601, Huangpu Avenue West, Guangzhou, 510632, P. R. China
| | - Qingsheng Gao
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, No. 601, Huangpu Avenue West, Guangzhou, 510632, P. R. China
| |
Collapse
|
4
|
Jiang M, Tan J, Chen Y, Zhang W, Chen P, Tang Y, Gao Q. Promoted electrocatalytic hydrogenation of furfural in a bi-phasic system. Chem Commun (Camb) 2023; 59:3103-3106. [PMID: 36808426 DOI: 10.1039/d3cc00051f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The promoted electrocatalytic hydrogenation of biomass-derived furfural to 2-methylfuran is for the first time identified in a water/oil bi-phasic system, in which the oil phase can quickly separate hydrophobic products from the electrode/electrolyte interfaces, resulting in a beneficial equilibrium toward hydrodeoxygenation.
Collapse
Affiliation(s)
- Mei Jiang
- College of Chemistry and Materials Science and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China.
| | - Jingwen Tan
- College of Chemistry and Materials Science and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China.
| | - Yizhong Chen
- College of Chemistry and Materials Science and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China.
| | - Wenbiao Zhang
- College of Chemistry and Materials Science and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China. .,Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China
| | - Peng Chen
- College of Chemistry and Materials Science and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China.
| | - Yi Tang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China
| | - Qingsheng Gao
- College of Chemistry and Materials Science and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China.
| |
Collapse
|
5
|
Munirathinam B, Lerch L, Hüne D, Lentz L, Lenk T, Görke M, Garnweitner G, Schlüter N, Kubannek F, Schröder D, Gimpel T. Enhanced Performance of Laser‐Structured Copper Electrodes Towards Electrocatalytic Hydrogenation of Furfural. ChemElectroChem 2022. [DOI: 10.1002/celc.202200885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Balakrishnan Munirathinam
- Institute of Energy and Process Systems Engineering (InES) Technische Universität Braunschweig Langer Kamp 19B 38106 Braunschweig Germany
| | - Lukas Lerch
- Institute of Energy and Process Systems Engineering (InES) Technische Universität Braunschweig Langer Kamp 19B 38106 Braunschweig Germany
| | - Dorian Hüne
- Research Center Energy Storage Technologies (EST) Clausthal University of Technology Am Stollen 19 A 38640 Goslar Germany
| | - Lukas Lentz
- Research Center Energy Storage Technologies (EST) Clausthal University of Technology Am Stollen 19 A 38640 Goslar Germany
| | - Thorben Lenk
- Institut für Ökologische und Nachhaltige Chemie (IÖNC) Technische Universität Braunschweig Hagenring 30 38106 Braunschweig Germany
| | - Marion Görke
- Institute for Particle Technology (iPAT) Technische Universität Braunschweig Volkmaroder Str. 5 38104 Braunschweig Germany
| | - Georg Garnweitner
- Institute for Particle Technology (iPAT) Technische Universität Braunschweig Volkmaroder Str. 5 38104 Braunschweig Germany
- Battery Lab Factory Braunschweig (BLB) Technische Universität Braunschweig Volkmaroder Str. 5 38104 Braunschweig Germany
| | - Nicolas Schlüter
- Institute of Energy and Process Systems Engineering (InES) Technische Universität Braunschweig Langer Kamp 19B 38106 Braunschweig Germany
| | - Fabian Kubannek
- Institute of Energy and Process Systems Engineering (InES) Technische Universität Braunschweig Langer Kamp 19B 38106 Braunschweig Germany
| | - Daniel Schröder
- Institute of Energy and Process Systems Engineering (InES) Technische Universität Braunschweig Langer Kamp 19B 38106 Braunschweig Germany
- Battery Lab Factory Braunschweig (BLB) Technische Universität Braunschweig Volkmaroder Str. 5 38104 Braunschweig Germany
| | - Thomas Gimpel
- Research Center Energy Storage Technologies (EST) Clausthal University of Technology Am Stollen 19 A 38640 Goslar Germany
| |
Collapse
|