1
|
Marsh JW, Hacker L, Huang S, Boulet MHC, White JRG, Martin LAW, Yeomans MA, Han HH, Diez-Perez I, Musgrave RA, Hammond EM, Sedgwick AC. Fluorogenic platinum(IV) complexes as potential predictors for the design of hypoxia-activated platinum(IV) prodrugs. Dalton Trans 2024; 53:14811-14816. [PMID: 39169877 DOI: 10.1039/d4dt02173h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Hypoxia (low-oxygen) is one of the most common characteristics of solid tumours. Exploiting tumour hypoxia to reductively activate Pt(IV) prodrugs has the potential to deliver toxic Pt(II) selectively and thus overcome the systemic toxicity issues of traditional Pt(II) therapies. However, our current understanding of the behaviour of Pt(IV) prodrugs in hypoxia is limited. Here, we evaluated and compared the aryl carbamate fluorogenic Pt(IV) complexes, CisNap and CarboNap, as well as the previously reported OxaliNap, as potential hypoxia-activated Pt(IV) (HAPt) prodrugs. Low intracellular oxygen concentrations (<0.1%) induced the greatest changes in the respective fluorescence emission channels. However, no correlation between reduction under hypoxic conditions and toxicity was observed, except in the case for CarboNap, which displayed significant hypoxia-dependent toxicity. Other aryl carbamate Pt(IV) derivatives (including non-fluorescent analogues) mirrored these observations, where carboplatin(IV) derivative CarboPhen displayed a hypoxia-selective cytotoxicity similar to that of CarboNap. These findings underscore the need to perform extensive structure activity relationship studies on the cytotoxicity of Pt(IV) complexes under normoxic and hypoxic conditions.
Collapse
Affiliation(s)
- Jevon W Marsh
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, OX1 3TA, UK.
| | - Lina Hacker
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK.
| | - Shitong Huang
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, OX1 3TA, UK.
| | - Marie H C Boulet
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, OX1 3TA, UK.
| | - Jhanelle R G White
- Department of Chemistry, King's College London, 7 Trinity Street, London, SE1 1DB, UK
| | - Louise A W Martin
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK.
| | - Megan A Yeomans
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, OX1 3TA, UK.
| | - Hai-Hao Han
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, P. R. China
| | - Ismael Diez-Perez
- Department of Chemistry, King's College London, 7 Trinity Street, London, SE1 1DB, UK
| | - Rebecca A Musgrave
- Department of Chemistry, King's College London, 7 Trinity Street, London, SE1 1DB, UK
| | - Ester M Hammond
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK.
| | - Adam C Sedgwick
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, OX1 3TA, UK.
- Department of Chemistry, King's College London, 7 Trinity Street, London, SE1 1DB, UK
| |
Collapse
|
2
|
Huang S, Marsh JW, White JRG, Ha TQ, Twigger SA, Diez-Perez I, Sedgwick AC. A colorimetric approach for monitoring the reduction of platinum(iv) complexes in aqueous solution. NEW J CHEM 2024; 48:7548-7551. [PMID: 38689796 PMCID: PMC11057408 DOI: 10.1039/d4nj00859f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
We report the synthesis of 4-nitrophenyl (4-NP) functionalised Pt(iv) complexes as a colorimetric strategy for monitoring Pt(iv) reduction in aqueous solution. Treatment of each 4-NP functionalised Pt(iv) complex with the biological reductant sodium ascorbate led to a colour change from clear to yellow, which was attributed to the reduction of Pt(iv) to Pt(ii) and simultaneous release of 4-nitroaniline. Trends in reduction profiles and a photocatalysed reduction for each Pt(iv) complex were observed.
Collapse
Affiliation(s)
- Shitong Huang
- Chemistry Research Laboratory, University of Oxford Mansfield Road OX1 3TA UK
| | - Jevon W Marsh
- Chemistry Research Laboratory, University of Oxford Mansfield Road OX1 3TA UK
| | - Jhanelle R G White
- Department of Chemistry, King's College London 7 Trinity Street London SE1 1DB UK
| | - Tracy Q Ha
- Department of Chemistry, King's College London 7 Trinity Street London SE1 1DB UK
| | - Sophie A Twigger
- Department of Oncology, University of Oxford Old Road Campus Research Building Oxford OX3 7DQ UK
| | - Ismael Diez-Perez
- Department of Chemistry, King's College London 7 Trinity Street London SE1 1DB UK
| | - Adam C Sedgwick
- Chemistry Research Laboratory, University of Oxford Mansfield Road OX1 3TA UK
- Department of Chemistry, King's College London 7 Trinity Street London SE1 1DB UK
| |
Collapse
|
3
|
Amarsy I, Papot S, Gasser G. Stimuli‐Responsive Metal Complexes for Biomedical Applications. Angew Chem Int Ed Engl 2022; 61:e202205900. [DOI: 10.1002/anie.202205900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Ivanna Amarsy
- Chimie ParisTech PSL University, CNRS Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology 75005 Paris France
| | - Sébastien Papot
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP) Université de Poitiers, CNRS Equipe Labellisée Ligue Contre le Cancer 4 rue Michel Brunet, TSA 51106 86073 Poitiers France
| | - Gilles Gasser
- Chimie ParisTech PSL University, CNRS Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology 75005 Paris France
| |
Collapse
|
4
|
Amarsy I, Papot S, Gasser G. Stimuli‐Responsive Metal Complexes for Biomedical Applications. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ivanna Amarsy
- Chimie ParisTech - PSL: Ecole nationale superieure de chimie de Paris PSL University FRANCE
| | - Sébastien Papot
- Université de Poitiers: Universite de Poitiers Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP) FRANCE
| | - Gilles Gasser
- Universite PSL Chimie ParisTech 11, rue Pierre et Marie Curie 75005 Paris FRANCE
| |
Collapse
|