1
|
Oggianu M, Mameli V, Hernández-Rodríguez MA, Monni N, Souto M, Brites CD, Cannas C, Manna F, Quochi F, Cadoni E, Masciocchi N, Carneiro Neto AN, Carlos LD, Mercuri ML. Insights into Nd III to Yb III Energy Transfer and Its Implications in Luminescence Thermometry. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:3452-3463. [PMID: 38617804 PMCID: PMC11008107 DOI: 10.1021/acs.chemmater.4c00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/16/2024]
Abstract
This work challenges the conventional approach of using NdIII 4F3/2 lifetime changes for evaluating the experimental NdIII → YbIII energy transfer rate and efficiency. Using near-infrared (NIR) emitting Nd:Yb mixed-metal coordination polymers (CPs), synthesized via solvent-free thermal grinding, we demonstrate that the NdIII [2H11/2 → 4I15/2] → YbIII [2F7/2 → 2F5/2] pathway, previously overlooked, dominates energy transfer due to superior energy resonance and J-level selection rule compatibility. This finding upends the conventional focus on the NdIII [4F3/2 → 4I11/2] → YbIII [2F7/2 → 2F5/2] transition pathway. We characterized Nd0.890Yb0.110(BTC)(H2O)6 as a promising cryogenic NIR thermometry system and employed our novel energy transfer understanding to perform simulations, yielding theoretical thermometric parameters and sensitivities for diverse Nd:Yb ratios. Strikingly, experimental thermometric data closely matched the theoretical predictions, validating our revised model. This novel perspective on NdIII → YbIII energy transfer holds general applicability for the NdIII/YbIII pair, unveiling an important spectroscopic feature with broad implications for energy transfer-driven materials design.
Collapse
Affiliation(s)
- Mariangela Oggianu
- Dipartimento
di Scienze Chimiche e Geologiche, Università
degli Studi di Cagliari, Monserrato I-09042, Italy
- INSTM, Via Giuseppe Giusti, 9, Firenze 50121, Italy
| | - Valentina Mameli
- Dipartimento
di Scienze Chimiche e Geologiche, Università
degli Studi di Cagliari, Monserrato I-09042, Italy
- INSTM, Via Giuseppe Giusti, 9, Firenze 50121, Italy
| | - Miguel A. Hernández-Rodríguez
- Phantom-g,
Department of Physics, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-193, Portugal
| | - Noemi Monni
- Dipartimento
di Scienze Chimiche e Geologiche, Università
degli Studi di Cagliari, Monserrato I-09042, Italy
- INSTM, Via Giuseppe Giusti, 9, Firenze 50121, Italy
| | - Manuel Souto
- Department
of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-193, Portugal
| | - Carlos D.S. Brites
- Phantom-g,
Department of Physics, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-193, Portugal
| | - Carla Cannas
- Dipartimento
di Scienze Chimiche e Geologiche, Università
degli Studi di Cagliari, Monserrato I-09042, Italy
- INSTM, Via Giuseppe Giusti, 9, Firenze 50121, Italy
| | - Fabio Manna
- Dipartimento
di Scienze Chimiche e Geologiche, Università
degli Studi di Cagliari, Monserrato I-09042, Italy
| | - Francesco Quochi
- INSTM, Via Giuseppe Giusti, 9, Firenze 50121, Italy
- Dipartimento
di Fisica, Università degli Studi
di Cagliari, Complesso Universitario di Monserrato, Monserrato I-09042, Italy
| | - Enzo Cadoni
- Dipartimento
di Scienze Chimiche e Geologiche, Università
degli Studi di Cagliari, Monserrato I-09042, Italy
| | - Norberto Masciocchi
- Dipartimento
di Scienza e Alta Tecnologia & To.Sca.Lab., Università degli Studi dell, via Valleggio 11, Como 22100, Italy
| | - Albano N. Carneiro Neto
- Phantom-g,
Department of Physics, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-193, Portugal
| | - Luís D. Carlos
- Phantom-g,
Department of Physics, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-193, Portugal
| | - Maria Laura Mercuri
- Dipartimento
di Scienze Chimiche e Geologiche, Università
degli Studi di Cagliari, Monserrato I-09042, Italy
- INSTM, Via Giuseppe Giusti, 9, Firenze 50121, Italy
| |
Collapse
|
2
|
Orlova AV, Shmychkov NV, Vlasova KY, Iakimova TM, Lepnev LS, Eliseev AA, Utochnikova VV. Ytterbium 10-carboxyperylene-3,4,9-tricarboxylates for targeted NIR luminescent bioimaging. Dalton Trans 2024; 53:3980-3984. [PMID: 38349065 DOI: 10.1039/d3dt04298g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Two new ytterbium coordination compounds Yb(HPTC)(H2O)2 (Yb1) and Yb(HPTC)(Phen) (Yb2) were obtained using 10-carboxyperylene-3,4,9-tricarboxylate ion (HPTC3-) as a sensitizer. Both coordination compounds exhibited intense NIR-II luminescence upon excitation in the visible range and formed stable suspensions with nanoparticles of 50-70 nm in size in an aqueous solution of sodium alginate. Both complexes demonstrated non-toxicity up to at least 25 mg L-1 in two cell cultures: cancer cells MCF7 and embryonic cells HEK293T - making them suitable for bioimaging. For both complexes, the accumulation in cells was directly measured and it was shown that the accumulation of Yb2 was the same for both cell types (0.51-0.52 πg per cell), while Yb1 demonstrated selective accumulation in cancer cells (0.04 πg per cell for HEK293T and 7.00 πg per cell for MCF7). Thus, Yb1 can also be proposed as a selective vis-excited NIR emitting bioprobe.
Collapse
Affiliation(s)
- Anastasia V Orlova
- M.V. Lomonosov Moscow State University, 1/3 Leninskie Gory, Moscow, 119991, Russia.
| | - Nazar V Shmychkov
- M.V. Lomonosov Moscow State University, 1/3 Leninskie Gory, Moscow, 119991, Russia.
| | - Kseniia Yu Vlasova
- M.V. Lomonosov Moscow State University, 1/3 Leninskie Gory, Moscow, 119991, Russia.
| | - Tamara M Iakimova
- M.V. Lomonosov Moscow State University, 1/3 Leninskie Gory, Moscow, 119991, Russia.
| | - Leonid S Lepnev
- P.N. Lebedev Physical Institute, Russian Academy of Sciences, Leninsky Prosp. 53, Moscow, 119992, Russia
| | - Andrei A Eliseev
- M.V. Lomonosov Moscow State University, 1/3 Leninskie Gory, Moscow, 119991, Russia.
| | | |
Collapse
|
3
|
Bobrovsky A, Piryazev A, Ivanov D, Kozlov M, Utochnikova V. Temperature-Dependent Circularly Polarized Luminescence of a Cholesteric Copolymer Doped with a Europium Complex. Polymers (Basel) 2023; 15:polym15061344. [PMID: 36987125 PMCID: PMC10056765 DOI: 10.3390/polym15061344] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
The design of new materials for non-contact temperature sensors is an important task for scientists working in the fields of chemistry, physics, and materials science. In the present paper, a novel cholesteric mixture based on a copolymer doped with a highly luminescent europium complex was prepared and studied. It was found that the spectral position of the selective reflection peak strongly depends on temperature and a shift towards shorter wavelengths is observed upon heating with an amplitude of more than 70 nm, from the red to green spectral range. This shift is associated with the existence and melting of clusters of smectic order, as confirmed by X-ray diffraction investigations. The extreme temperature dependence of the wavelength of selective light reflection provides a high thermosensitivity of the degree of circular polarization of the europium complex emission. The highest values of the dissymmetry factor are observed when the peak of selective light reflection fully overlaps with the emission peak. As a result, the highest sensitivity of 65%/K for luminescent thermometry materials was obtained. In addition, the ability of the prepared mixture to form stable coatings was demonstrated. The obtained experimental results, i.e., the high thermosensitivity of the degree of circular polarization, and the ability to form stable coatings allow us to consider the prepared mixture as a promising material for luminescent thermometry.
Collapse
Affiliation(s)
- Alexey Bobrovsky
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia
| | - Alexey Piryazev
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Semenov Av. 1, Chernogolovka, 142432 Moscow, Russia
- Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
| | - Dimitri Ivanov
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Semenov Av. 1, Chernogolovka, 142432 Moscow, Russia
- Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
- Institut de Sciences des Matériaux de Mulhouse-IS2M, CNRS UMR7361, 15 Jean Starcky, 68057 Mulhouse, France
| | - Makarii Kozlov
- Material Sciences Department, Lomonosov Moscow State University, Leninskie Gory, 1/53, 119991 Moscow, Russia
| | - Valentina Utochnikova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia
- Material Sciences Department, Lomonosov Moscow State University, Leninskie Gory, 1/53, 119991 Moscow, Russia
| |
Collapse
|
4
|
Kiraev SR, Mathieu E, Kovacs D, Wells JAL, Tomar M, Andres J, Borbas KE. Improved emission of Yb( iii) ions in triazacyclononane-based macrocyclic ligands compared to cyclen-based ones. Dalton Trans 2022; 51:16596-16604. [DOI: 10.1039/d2dt02266d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Yb(iii) complexes were synthesised from ligands with a 1,4,7-triazacyclononane (tacn) macrocyclic core. Tacn-based compounds equipped with 2 picolinate arms were more emissive than their tricarboxamide-cyclen analogues carrying the same antenna.
Collapse
Affiliation(s)
- Salauat R. Kiraev
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120, Uppsala, Sweden
| | - Emilie Mathieu
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120, Uppsala, Sweden
| | - Daniel Kovacs
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120, Uppsala, Sweden
| | - Jordann A. L. Wells
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120, Uppsala, Sweden
| | - Monika Tomar
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120, Uppsala, Sweden
| | - Julien Andres
- Chemistry and Chemical Engineering Section, Ecole Polytechnique Fédérale de Lausanne (EPFL), BCH 3311, CH-1015, Lausanne, Switzerland
| | - K. Eszter Borbas
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120, Uppsala, Sweden
| |
Collapse
|