1
|
Li Y, Zeng Z, Guo Y, Liu X, Zhang YQ, Ouyang Z, Wang Z, Liu X, Zheng YZ. Synergy of Magnetic Anisotropy and Ferromagnetic Interaction Triggering a Dimeric Cr(II) Zero-Field Single-Molecule Magnet. Inorg Chem 2023; 62:6297-6305. [PMID: 37040590 DOI: 10.1021/acs.inorgchem.2c04359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
A novel CrII-dimeric complex, [CrIIN(SiiPr3)2(μ-Cl)(THF)]2 (1), has been successfully constructed using a bulky silyl-amide ligand. Single-crystal structure analysis reveals that complex 1 exhibits a binuclear motif, with a Cr2Cl2 rhombus core, where two equivalent tetra-coordinate CrII centers in the centrosymmetric unit display quasi-square planar geometry. The crystal structure has been well simulated and explored by density functional theory calculations. The axial zero-field splitting parameter (D < 0) with a small rhombic (E) value is unambiguously determined by systematic investigations of magnetic measurements, high-frequency electron paramagnetic resonance spectroscopy, and ab initio calculations. Remarkably, ac magnetic susceptibility data unveil that 1 features slow dynamic magnetic relaxation typical of single-molecule magnet behavior with Ueff = 22 K in the absence of a dc field. This increases up to 35 K under a corresponding static field. Moreover, magnetic studies and theoretical calculations point out that a non-negligible ferromagnetic coupling (FMC) exists in the dimeric Cr-Cr units of 1. The coexistence of magnetic anisotropy and FMC contributes to the first case of CrII-based single-molecule magnets (SMMs) under zero dc field.
Collapse
Affiliation(s)
- Yuzhu Li
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Zhaopeng Zeng
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yan Guo
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Xingman Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China
| | - Zhongwen Ouyang
- Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhenxing Wang
- Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiangyu Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yan-Zhen Zheng
- Frontier Institute of Science and Technology, School of Chemistry and School of Physics, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| |
Collapse
|
2
|
Li B, Du J, Ma Z, Zhi Y, Sun L, Ma P, Li M, Wei J. A spherical capped square antiprismatic DyIII complex encapsulated three acylhydrazone Schiff base ligands behaving field-induced single-ion magnet behaviour. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
3
|
Zorina-Tikhonova EN, Matyukhina AK, Chistyakov AS, Vologzhanina AV, Korlyukov AA, Gogoleva NV, Novikova VA, Belova EV, Ugolkova EA, Starikova AA, Korchagin DV, Babeshkin KA, Efimov NN, Kiskin MA, Eremenko IL. Synthesis, structure, magnetic properties and thermal behaviour of Ba–M II (M II = Mn, Co, Cu, and Zn) allylmalonates. NEW J CHEM 2022. [DOI: 10.1039/d2nj03751c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A series of Ba-MII complexes with allylmalonic acid anions [BaMII(Amal)2(H2O)3]n (MII = Mn, Co, Cu, and Zn) were synthesized. The magnetic measurements revealed slow magnetic relaxation in non-zero field (HDC = 1500 Oe) for CoII ions.
Collapse
Affiliation(s)
- Ekaterina N. Zorina-Tikhonova
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 31, 119991 Moscow, Russian Federation
| | - Anna K. Matyukhina
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 31, 119991 Moscow, Russian Federation
| | - Aleksandr S. Chistyakov
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 31, 119991 Moscow, Russian Federation
| | - Anna V. Vologzhanina
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova str. 28, 119334 Moscow, Russian Federation
| | - Alexander A. Korlyukov
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova str. 28, 119334 Moscow, Russian Federation
| | - Natalia V. Gogoleva
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 31, 119991 Moscow, Russian Federation
| | - Veronika A. Novikova
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 31, 119991 Moscow, Russian Federation
- Chemistry Department, Lomonosov Moscow State University, Leninsky gory, 1-3, 1119991 Moscow, Russian Federation
| | - Ekaterina V. Belova
- Chemistry Department, Lomonosov Moscow State University, Leninsky gory, 1-3, 1119991 Moscow, Russian Federation
| | - Elena A. Ugolkova
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 31, 119991 Moscow, Russian Federation
| | - Alyona A. Starikova
- Institute of Physical and Organic Chemistry, Southern Federal University, prosp. Stachki 194/2, Rostov-on-Don 344090, Russian Federation
| | - Denis V. Korchagin
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Ac. Semenov prosp. 1, Chernogolovka, Moscow region 142432, Russian Federation
| | - Konstantin A. Babeshkin
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 31, 119991 Moscow, Russian Federation
| | - Nikolay N. Efimov
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 31, 119991 Moscow, Russian Federation
| | - Mikhail A. Kiskin
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 31, 119991 Moscow, Russian Federation
| | - Igor L. Eremenko
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 31, 119991 Moscow, Russian Federation
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova str. 28, 119334 Moscow, Russian Federation
| |
Collapse
|