1
|
Jiao J, Li C, She Y, Shi H, Di W, Ye N, Hu Z, Wu Y. Li 13YGe 4O 16: A Mid-infrared Rare-Earth Germanate Nonlinear Optical Crystal Featuring a Broad Transmission Range and an Enlarged Band Gap. Inorg Chem 2024; 63:3986-3991. [PMID: 38359456 DOI: 10.1021/acs.inorgchem.3c04635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Germanate is garnering increasing attention in the field of optoelectronics owing to its competitive optical transparency and robust stability. Herein, a novel lithium-rich rare-earth germanate, Li13YGe4O16, was fabricated for the first time using a high-temperature solution approach. This compound adopts the asymmetric space group Cmc21 (no. 36), characterized by isolated [YO6] and [GeO4] structural motifs with Li+ cations located in the channel. Notably, Li13YGe4O16 presents a short ultraviolet cutoff edge at 240 nm, indicative of an enlarged band gap of 4.96 eV and showcases a wide mid-infrared transmission region exceeding 6.0 μm. Moreover, Li13YGe4O16 features exceptional thermal stability and moderate second harmonic generation (SHG) intensity. Additionally, a theoretical analysis suggests that the distorted [YO6] octahedra. [GeO4] and [LiO4] tetrahedra play a significant role in the optical activities of Li13YGe4O16. These attributes endow Li13YGe4O16 with the potential to serve as a new mid-IR nonlinear optical (NLO) crystal and enrich the structural chemistry of germanates.
Collapse
Affiliation(s)
- Jinmiao Jiao
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Conggang Li
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Yuheng She
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Haiyan Shi
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Wenhao Di
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Ning Ye
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Zhanggui Hu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Yicheng Wu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
2
|
Fang G, Teng X, Yan L, Wu Y, Xue K, Zhang X, Ding YM, Zhou L, Wen Q. Investigation of nonlinear optical properties in α-A 2BB'O 6 (A = Li, Na, K; B = Ti, Zr, Hf; B' = Se, Te) by first-principles calculations. Phys Chem Chem Phys 2024; 26:4403-4411. [PMID: 38240016 DOI: 10.1039/d3cp05174a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Nonlinear optical (NLO) crystals based on oxides typically have wide bandgaps and large laser damage thresholds (LDTs), which are important for generating high-power and continuous terahertz radiation. Recently, a new family of NLO materials α-A2BB'O6 including Li2TiTeO6 (LTTO) with a strong second harmonic generation (SHG) efficiency of 26 × KH2PO4 (KDP) and a large LDT of 550 MW cm-2 were reported. Herein, we systematically study the electronic structures and NLO properties of α-A2BB'O6 (A = Li, Na, K; B = Ti, Zr, Hf; B' = Se, Te) to explore the relationship between the structure and SHG coefficient. First, 15 members of the A2BB'O6 family are demonstrated to be highly stable and NLO materials, excluding K2TiTeO6, K2TiSeO6 and K2ZrSeO6. Then, the electronic band structure, dipole moment and distortion of BO6/B'O6 octahedrons, SHG coefficient and terahertz absorption spectrum are calculated comprehensively with the element variation of A-site, B-site and B'-site. Finally, the magnitude of the SHG coefficient is found to be directly proportional to the value of total dipole moment and distortion, and inversely proportional to the bandgap value. Most importantly, among the A2BB'O6 materials, K2HfSeO6 shows the smallest direct bandgap of 2.99 eV, the largest SHG coefficient d33 of about 5 × LTTO and low terahertz absorbance from 0.1 to 9 THz. Our results provide new NLO crystals that may have potential application in terahertz radiation sources and other nonlinear electronics.
Collapse
Affiliation(s)
- Gaojing Fang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China.
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xiaojun Teng
- Chengdu Answer Information Technology Co., Ltd., Chengdu 610041, China
| | - Luo Yan
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China.
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yu Wu
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China.
| | - Kui Xue
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China.
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xiaofeng Zhang
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yi-Min Ding
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China.
| | - Liujiang Zhou
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China.
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qiye Wen
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China.
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
3
|
Wang L, Bai C, Kong Y, Iqbal M, Chu Y, Li J. Synthesis, structure and characterization of Cd 2TeO 3Cl 2 with unprecedented [Cd 2O 6Cl 4] octahedral dimers. Dalton Trans 2023; 52:16297-16302. [PMID: 37855272 DOI: 10.1039/d3dt02515b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
A new mixed anionic compound Cd2TeO3Cl2 with unprecedented [Cd2O6Cl4] octahedral dimers has been synthesized, and millimeter-scale single crystals of Cd2TeO3Cl2 have been grown by the vertical Bridgman method with CdCl2 as the flux. Cd2TeO3Cl2 crystallizes in the centrosymmetric P1̄ (no. 2) space group, and shows a mixed cationic layer structure constituted by distorted [TeO3] motifs, mixed anionic [Cd2O6Cl4] chains, and [Cd2O6Cl4] octahedral dimers. Experimental and theoretical results show that Cd2TeO3Cl2 is a direct band gap compound with an experimental band gap of ∼4.25 eV. Meanwhile, the compound has good optical transmittance in the 3-5 μm atmospheric window. The results indicate that Cd2TeO3Cl2 could be used as a promising mid-IR window material, and could enrich the chemical and structural diversity of oxides.
Collapse
Affiliation(s)
- Linan Wang
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Bai
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Urumqi 830011, China.
| | - Yingying Kong
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Urumqi 830011, China.
| | - Maqsood Iqbal
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Chu
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junjie Li
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Speciation of Tellurium(VI) in Aqueous Solutions: Identification of Trinuclear Tellurates by 17O, 123Te, and 125Te NMR Spectroscopy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248654. [PMID: 36557790 PMCID: PMC9788595 DOI: 10.3390/molecules27248654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022]
Abstract
Tellurates have attracted the attention of researchers over the past decade due to their properties and as less toxic forms of tellurium derivatives. However, the speciation of Te(VI) in aqueous solutions has not been comprehensively studied. We present a study of the equilibrium speciation of tellurates in aqueous solutions at a wide pH range, 2.5-15 by 17O, 123Te, and 125Te NMR spectroscopy. The coexistence of monomeric, dimeric, and trimeric oxidotellurate species in chemical equilibrium at a wide pH range has been shown. NMR spectroscopy, DFT computations, and single-crystal X-ray diffraction studies confirmed the formation and coexistence of trimeric tellurate anions with linear and triangular structures. Two cesium tellurates, Cs2[Te4O8(OH)10] and Cs2[Te2O4(OH)6], were isolated from the solution at pH 5.5 and 9.2, respectively, and studied by single-crystal X-ray diffractometry, revealing dimeric and tetrameric tellurate anions in corresponding crystal structures.
Collapse
|
5
|
Orr MS, Cruz KR, Nguyen HH, Kojima AL, Macaluso RT. Versatility of Tellurium in Heteroanionic Ln 2O 2Te (Ln = La, Ce, Pr) and Tellurate Ln 2TeO 6 (Ln = La, Pr). Inorg Chem 2022; 61:18002-18009. [DOI: 10.1021/acs.inorgchem.2c02287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Melissa S. Orr
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas76019, United States
| | - Katheryn R. Cruz
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas76019, United States
| | - Hoa H. Nguyen
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas76019, United States
| | - Akari L. Kojima
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas76019, United States
| | - Robin T. Macaluso
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas76019, United States
| |
Collapse
|