1
|
Kulkarni AY, Karmakar G, Shah AY, Nigam S, Kumbhare G, Tyagi A, Butcher RJ, Chauhan RS, Kumar NN. Controlled synthesis of photoresponsive bismuthinite (Bi 2S 3) nanostructures mediated through a new 1D bismuth-pyrimidylthiolate coordination polymer as a molecular precursor. Dalton Trans 2023; 52:16224-16234. [PMID: 37853758 DOI: 10.1039/d3dt02143b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Bismuthinite (Bi2S3) nanostructures have garnered significant interest due to their appealing photoresponsivity which has positioned them as an attractive choice for energy conversion applications. However, to utilize their full potential, a simple and economically viable method of preparation is highly desirable. Herein, we present the synthesis and characterization including structural elucidation of a new air- and moisture-stable bismuth-pyrimidylthiolate complex. This complex serves as an efficient single-source molecular precursor for the facile preparation of phase-pure Bi2S3 nanostructures. Powder X-ray diffraction (PXRD), Raman spectroscopy, electron dispersive spectroscopy (EDS) and electron microscopy techniques were used to assess the crystal structure, phase purity, elemental composition and morphology of the as-prepared nanostructures. This study also revealed the profound effects of temperature and growth duration on the crystallinity, phase formation and morphology of nanostructures. The optical band gap of the nanostructures was tuned within the range of 1.9-2.3 eV, which is blue shifted with respect to the bulk bandgap and suitable for photovoltaic applications. Liquid junction photo-electrochemical cells fabricated from the as-prepared Bi2S3 nanostructure exhibit efficient photoresponsivity and good photo-stability, which project them as promising candidates for alternative low-cost photon absorber materials.
Collapse
Affiliation(s)
- Atharva Yeshwant Kulkarni
- Department of Chemistry, K. J. Somaiya College of Science and Commerce, Vidyavihar, Mumbai 400077, India.
| | - Gourab Karmakar
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| | - Alpa Y Shah
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | - Sandeep Nigam
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| | - Gayatri Kumbhare
- Department of Chemistry, K. J. Somaiya College of Science and Commerce, Vidyavihar, Mumbai 400077, India.
| | - Adish Tyagi
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| | - Raymond J Butcher
- Department of Chemistry, Howard University, Washington, DC, 20059, USA
| | - Rohit Singh Chauhan
- Department of Chemistry, K. J. Somaiya College of Science and Commerce, Vidyavihar, Mumbai 400077, India.
| | - N Naveen Kumar
- Materials Science Division, Bhabha Atomic Research Centre, Mumbai-400085, India
| |
Collapse
|
2
|
Karmakar G, Tyagi A, Shah AY, Kumbhare LB, Wadawale AP, Kedarnath G, Singh V. Synthesis of photoresponsive and photoemissive ultrathin 2D nanosheets of In 2S 3 achieved through a new single source molecular precursor. RSC Adv 2022; 12:27292-27299. [PMID: 36276044 PMCID: PMC9513690 DOI: 10.1039/d2ra05000e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/30/2022] [Indexed: 11/21/2022] Open
Abstract
Indium sulfide, a two-dimensional semiconductor material, has emerged as a promising candidate for cost-effective and sustainable solar cells. This report deals with the facile preparation of colloidal In2S3 with a new ultrathin nanosheet (NS) morphology. The synthesis was mediated through a new structurally characterized single source molecular precursor. The crystal structure, phase purity, and morphology of the NSs were thoroughly investigated by pXRD, Raman, XPS, and electron microscopic techniques. AFM studies revealed that the NSs have an average thickness of ∼1.76 nm. The optical studies confirm quantum confinement in the as-prepared NSs with a blue shift in the direct band gap, which lies in the optimal range suitable for solar cell application. Furthermore, photoluminescence studies indicate strong emission by these NSs in the blue region. The as-synthesized In2S3 NSs-based prototype photoelectrochemical cell exhibit high photostability and photoresponsivity, which make them suitable candidates for sustainable solar cells. Quantum confined ultrathin nanosheets of In2S3 were synthesized from a new structurally characterized molecular precursor. The prototype photoelectrochemical cell based on the material exhibited high photostability and photoresponsivity.![]()
Collapse
Affiliation(s)
- Gourab Karmakar
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400 085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India
| | - Adish Tyagi
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400 085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India
| | - Alpa Y. Shah
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400 085, India
| | | | - A. P. Wadawale
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400 085, India
| | - G. Kedarnath
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400 085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India
| | - Vishal Singh
- Materials Science Division, Bhabha Atomic Research Centre, Mumbai, 400 085, India
| |
Collapse
|