1
|
Awasthi A, Mallojjala SC, Kumar R, Eerlapally R, Hirschi JS, Draksharapu A. Altering the Localization of an Unpaired Spin in a Formal Ni(V) Species. Chemistry 2024; 30:e202302824. [PMID: 37903027 PMCID: PMC10841873 DOI: 10.1002/chem.202302824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/01/2023]
Abstract
The participation of both ligand and the metal center in the redox events has been recognized as one of the ways to attain the formal high valent complexes for the late 3d metals, such as Ni and Cu. Such an approach has been employed successfully to stabilize a Ni(III) bisphenoxyl diradical species in which there exist an equilibrium between the ligand and the Ni localized resultant spin. The present work, however, broadens the scope of the previously reported three oxidized equivalent species by conveying the approaches that tend to affect the reported equilibrium in CH3 CN at 233 K. Various spectroscopic characterization revealed that employing exogenous N-donor ligands like 1-methyl imidazole and pyridine favors the formation of the Ni centered localized spin though axial binding. In contrast, due to its steric hinderance, quinoline favors an exclusive ligand localized radical species. DFT studies shed light on the novel intermediates' complex electronic structure. Further, the three oxidized equivalent species with the Ni centered spin was examined for its hydrogen atom abstraction ability stressing their key role in alike reactions.
Collapse
Affiliation(s)
- Ayushi Awasthi
- Southern Laboratories-208 A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | | | - Rakesh Kumar
- Southern Laboratories-208 A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Raju Eerlapally
- Southern Laboratories-208 A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Jennifer S Hirschi
- Department of Chemistry, Binghamton University, Binghamton, New York, 13902, USA
| | - Apparao Draksharapu
- Southern Laboratories-208 A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| |
Collapse
|
2
|
Arora P, Gupta S, Kumari Vechalapu S, Kumar R, Awasthi A, Senthil S, Khanna S, Allimuthu D, Draksharapu A. Mn(II) Polypyridyl Complexes: Precursors to High Valent Mn(V)=O Species and Inhibitors of Cancer Cell Proliferation. Chemistry 2023; 29:e202301506. [PMID: 37415318 DOI: 10.1002/chem.202301506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/08/2023]
Abstract
The reaction of [(L)MnII ]2+ (L = neutral polypyridine ligand framework) in the presence of mCPBA (mCPBA = m-Chloroperoxybenzoic acid) generates a putative MnV =O species at RT. The proposed MnV =O species is capable of performing the aromatic hydroxylation of Cl-benzoic acid derived from mCPBA to give [(L)MnIII (m-Cl-salicylate)]+ , which in the presence of excess mCPBA generates a metastable [(L)MnV (O)(m-Cl-salicylate)]+ , characterized by UV/Vis absorption, EPR, resonance Raman spectroscopy, and ESI-MS studies. The current study highlights the fact that [(L)MnIII (m-Cl-salicylate)]+ formation may not be a dead end for catalysis. Further, a plausible mechanism has been proposed for the formation of [(L)MnV (O)-m-Cl-salicylate)]+ from [(L)MnIII (m-Cl-salicylate)]+ . The characterized transient [(L)MnV (O)-m-Cl-salicylate)]+ reported in the current work exhibits high reactivity for oxygen atom transfer reactions, supported by the electrophilic character depicted from Hammett studies using a series of para-substituted thioanisoles. The unprecedented study starting from a non-heme neutral polypyridine ligand framework paves a path for mimicking the natural active site of photosystem II under ambient conditions. Finally, evaluating the intracellular effect of Mn(II) complexes revealed an enhanced intracellular ROS and mitochondrial dysfunction to prevent the proliferation of hepatocellular carcinoma and breast cancer cells.
Collapse
Affiliation(s)
- Pragya Arora
- Southern Laboratories, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Sikha Gupta
- Southern Laboratories, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Sai Kumari Vechalapu
- Southern Laboratories, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Rakesh Kumar
- Southern Laboratories, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Ayushi Awasthi
- Southern Laboratories, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Sathyapriya Senthil
- Southern Laboratories, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Shweta Khanna
- Southern Laboratories, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Dharmaraja Allimuthu
- Southern Laboratories, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Apparao Draksharapu
- Southern Laboratories, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| |
Collapse
|
3
|
Kumar R, Ahsan F, Awasthi A, Swart M, Draksharapu A. Generation of Ru(III)-hypochlorite with resemblance to the heme-dependent haloperoxidase enzyme. Dalton Trans 2023; 52:12552-12559. [PMID: 37609762 DOI: 10.1039/d3dt02028b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The reaction of [(Me/BnTPEN)RuII(NCCH3)]2+ (BnTPEN = N1-benzyl-N1,N2,N2-tris(pyridine-2-ylmethyl)ethane-1,2-diamine and MeTPEN = N1-methyl-N1,N2,N2-tris(pyridine-2-ylmethyl)ethane-1,2-diamine) with mCPBA in the presence of chloride ions in CH3CN : H2O generated a novel (Me/BnTPEN)RuIII-OCl species at room temperature. This hypochlorite adduct could also be obtained by the direct reaction of NaOCl and HClO4 with (L)RuII complexes. The current study mimics the synthesis of a metal hypochlorite adduct in a similar fashion as in the heme-dependent haloperoxidase enzyme. As an electrophilic oxidant, the ruthenium hypochlorite adduct catalyzes hydrogen atom abstraction reactions of phenols and their derivatives.
Collapse
Affiliation(s)
- Rakesh Kumar
- Southern Laboratories - 208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Faiza Ahsan
- IQCC & Departament de Química, Universitat de Girona, 17003 Girona, Spain
| | - Ayushi Awasthi
- Southern Laboratories - 208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Marcel Swart
- IQCC & Departament de Química, Universitat de Girona, 17003 Girona, Spain
- ICREA, 08010, Barcelona, Spain.
| | - Apparao Draksharapu
- Southern Laboratories - 208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| |
Collapse
|