1
|
Huang Y, Chu D, Zhang Y, Xie C, Li G, Pan S. Structure-Prediction-Oriented Synthesis of Thiophosphates as Promising Infrared Nonlinear Optical Materials. Angew Chem Int Ed Engl 2024; 63:e202406576. [PMID: 38828829 DOI: 10.1002/anie.202406576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/25/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
Oriented synthesis of functional materials is a focus of attention in material science. As one of the most important function materials, infrared nonlinear optical materials with large second harmonic generation effects and broad optical band gap are in urgent need. In this work, directed by the theoretical structure prediction, the first series of non-centrosymmetric (NCS) alkali-alkaline earth metal [PS4]-based thiophosphates LiCaPS4 (Ama2), NaCaPS4 (P21), KCaPS4 (Pna21), RbCaPS4 (Pna21), CsCaPS4 (Pna21) were successfully synthesized. Comprehensive characterizations reveal that ACaPS4 could be regarded as promising IR NLO materials, exhibiting wide band gap (3.77-3.86 eV), moderate birefringence (0.027-0.064 at 1064 nm), high laser-induced damage threshold (LIDT, ~10×AGS), and suitable phase-matching second harmonic generation responses (0.4-0.6×AGS). Structure-properties analyses illustrate that the Ca-S bonds show non-ignorable covalent feature, and [PS4] together with [CaSn] units play dominant roles to determine the band gap and SHG response. This work indicates that Li-, Na- and K- analogs may be promising infrared nonlinear optical material candidates, and this is the first successful case of "prediction to synthesis" involving infrared (IR) nonlinear optical (NLO) crystals in the thiophosphate system and may provide a new avenue to the design and oriented synthesis of high-performance function materials in the future.
Collapse
Affiliation(s)
- Yi Huang
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi, 830011, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Dongdong Chu
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi, 830011, China
| | - Yong Zhang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Congwei Xie
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi, 830011, China
| | - Guangmao Li
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi, 830011, China
| | - Shilie Pan
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi, 830011, China
| |
Collapse
|
2
|
Tian X, Zhao N, Wu K, Xu J, Lu D, Yu H, Zhang H. Influence of Cation-Size Effects of Alkaline Earth (Ae) Metals on Dimensionality and Optical Anisotropy Regulation in K 4AeP 2S 8 Thiophosphates. Inorg Chem 2024; 63:8294-8301. [PMID: 38650372 DOI: 10.1021/acs.inorgchem.4c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Cationic substitution demonstrates significant potential for regulating structural dimensionality and physicochemical performance owing to the cation-size effect. Leveraging this characteristic, this study synthesized a new family of K4AeP2S8 (Ae = alkaline earth elements: Mg, Ca, Sr, and Ba) thiophosphates, involving the substitution of Ae2+ cations. The synthesized compounds crystallized in distinct space groups, monoclinic P2/c (Ae = Mg) versus orthorhombic Ibam (Ae = Ca, Sr, and Ba), exhibiting intriguing dimensionality transformations from zero-dimensional (0D) [Mg2P4S16]8- clusters in K4MgP2S8 to 1D ∞[AeP2S8]4- chains in other K4AeP2S8 thiophosphates owing to the varying ionic radii of Ae2+ cations, Ae-S bond lengths, and coordination numbers of AeSn (Mg: n = 6 versus other: n = 8). Experimental investigations revealed that K4AeP2S8 thiophosphates featured wide optical bandgaps (3.37-3.64 eV), and their optical absorptions were predominantly influenced by the S 3p and P 3s orbitals, with negligible contributions from the K and Ae cations. Notably, within the K4AeP2S8 series, birefringence (Δn) increased from K4MgP2S8 (Δn = 0.034) to other K4AeP2S8 (Δn = 0.050-0.079) compounds, suggesting that infinite 1D chains more significantly influence Δn origins than 0D clusters, thus offering a feasible approach for enhancing optical anisotropy and exploring potential new birefringent materials.
Collapse
Affiliation(s)
- Xinyu Tian
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Ning Zhao
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Kui Wu
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Jingjing Xu
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Dazhi Lu
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Haohai Yu
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Huaijin Zhang
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
3
|
Huang Y, Chu D, Hou X, Li G, Zhang Y. Na 6Mg 3P 4S 16 and RbMg 2PS 4Cl 2: two Mg-based thiophosphates with ultrawide bandgaps resulting from [MgS 6] and [MgS xCl 6-x] octahedra. Dalton Trans 2024; 53:866-871. [PMID: 38099922 DOI: 10.1039/d3dt03637e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Designing wide-bandgap chalcogenides is one of the most important ways of obtaining high-performance infrared (IR) functional materials. In this work, two Mg-based metal thiophosphates, namely Na6Mg3P4S16 (NMPS) and RbMg2PS4Cl2 (RMPSC), were successfully obtained by introducing [MgS6] and [MgSxCl6-x] octahedra into thiophosphates. In addition, their crystal structures were determined, a first for Mg-containing [PS4]-based thiophosphates to the best of our knowledge. Their bandgaps were investigated in theoretical ways and verified by taking experimental measurements, and determined to be 3.80 eV for NMPS and 3.93 eV for RMPSC, values greater than those of the other investigated thiophosphate halides. The wide bandgaps of NMPS and RMPSC were attributed, based on theoretical calculations, to the [MgSxCl6-x] (x = 0-6) octahedron.
Collapse
Affiliation(s)
- Yi Huang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Dongdong Chu
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueling Hou
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangmao Li
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Zhang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
4
|
Zhao C, Lu D, Tian X, Xu J, Zhang B, Wu K, Yu H, Zhang H. Noncentrosymmetric Na 6Pb 3P 4S 16 and Centrosymmetric K 2M IIP 2S 6 (M II = Mg and Zn) Displaying Multiple Membered-Ring Configurations and Strong Optical Anisotropy. Inorg Chem 2023; 62:21487-21496. [PMID: 38055418 DOI: 10.1021/acs.inorgchem.3c03691] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Three thiophosphates including noncentrosymmetric Na6Pb3P4S16 and centrosymmetric K2MIIP2S6 (MII = Mg and Zn) were successfully synthesized in vacuum-sealed silica tubes. Note that interesting multiple six membered-rings (6-MRs) including 6-NaS6-MRs and 6-KSn-MRs (n = 6 and 7) formed by A+-centered polyhedra were discovered in the structures of title thiophosphates and these MR-composed three-dimensional (3D) tunnels show great possibility to facilitate the filling of various structural blocks (such as zero-dimensional (0D) Pb3S10 trimers or one-dimensional (1D) (MIISn)n chains). Na6Pb3P4S16 exhibits the strongest nonlinear optical (NLO) response (5.4 × AgGaS2) with phase-matching (PM) behavior among the known Pb-based PM NLO sulfides, which is much larger than that of Pb3P2S8 (3.5 × AgGaS2); it was verified that such large second harmonic generation (SHG) response in Na6Pb3P4S16 can be attributed to the huge contribution of stereochemically active PbS4 units based on the SHG-density and dipole-moment calculations. Moreover, title thiophosphates show large birefringences (Δn = 0.102-0.21), which indicates that incorporation of [P2S6] dimers or polarized PbS4 units into structures provides positive benefits for the onset of strong optical anisotropy.
Collapse
Affiliation(s)
- Chenyao Zhao
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Dazhi Lu
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Xinyu Tian
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Jingjing Xu
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Bingbing Zhang
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Kui Wu
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Haohai Yu
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Huaijin Zhang
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|