Meng L, Deng YF, Holmes SM, Zhang YZ. Thermo- and photo-induced electron transfer in a series of [Fe
2Co
2] capsules.
Dalton Trans 2023;
52:1616-1622. [PMID:
36648100 DOI:
10.1039/d2dt03328c]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recently, a family of [Fe2Co2] molecular capsules that display tunable electron transfer-coupled spin transition (ETCST) behavior were reported via a smart approach through Schiff-base condensation of aldehyde-functionalized 2,2-bipyridines (bpyCHO) and 1,7-heptanediamine (H2N(CH2)7NH2). Here, three more capsule complexes {[(TpR)Fe(CN)3]2[Co(bpyCN(CH2)nNCbpy)]2[ClO4]2}·n(solvent) (1, TpR = Tp*, n = 5, sol = 8DMF; 2, TpR = TpMe, n = 9, sol = 5MeCN; and 3, TpR = Tp*, n = 11, sol = 5MeCN), where Tp* = hydridotris(3,5-dimethylpyrazol-1-yl)borate and TpMe = hydridotris(3-methylpyrazol-1-yl)borate are reported, demonstrating a successful extension of such an approach with other alkyldiamines of different lengths. Combined X-ray crystallographic, infrared spectroscopic and magnetic studies reveal incomplete electron transfer with either changing temperature or upon light exposure.
Collapse