1
|
Bhuiyan FH, Li YS, Kim SH, Martini A. Shear-activation of mechanochemical reactions through molecular deformation. Sci Rep 2024; 14:2992. [PMID: 38316829 PMCID: PMC10844542 DOI: 10.1038/s41598-024-53254-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/30/2024] [Indexed: 02/07/2024] Open
Abstract
Mechanical stress can directly activate chemical reactions by reducing the reaction energy barrier. A possible mechanism of such mechanochemical activation is structural deformation of the reactant species. However, the effect of deformation on the reaction energetics is unclear, especially, for shear stress-driven reactions. Here, we investigated shear stress-driven oligomerization reactions of cyclohexene on silica using a combination of reactive molecular dynamics simulations and ball-on-flat tribometer experiments. Both simulations and experiments captured an exponential increase in reaction yield with shear stress. Elemental analysis of ball-on-flat reaction products revealed the presence of oxygen in the polymers, a trend corroborated by the simulations, highlighting the critical role of surface oxygen atoms in oligomerization reactions. Structural analysis of the reacting molecules in simulations indicated the reactants were deformed just before a reaction occurred. Quantitative evidence of shear-induced deformation was established by comparing bond lengths in cyclohexene molecules in equilibrium and prior to reactions. Nudged elastic band calculations showed that the deformation had a small effect on the transition state energy but notably increased the reactant state energy, ultimately leading to a reduction in the energy barrier. Finally, a quantitative relationship was developed between molecular deformation and energy barrier reduction by mechanical stress.
Collapse
Affiliation(s)
- Fakhrul H Bhuiyan
- Department of Mechanical Engineering, University of California Merced, 5200 N. Lake Road, Merced, CA, 95343, USA
| | - Yu-Sheng Li
- Department of Chemical Engineering and Materials Research Institute, Pennsylvania State University, University Park, PA, 16802, USA
| | - Seong H Kim
- Department of Chemical Engineering and Materials Research Institute, Pennsylvania State University, University Park, PA, 16802, USA
| | - Ashlie Martini
- Department of Mechanical Engineering, University of California Merced, 5200 N. Lake Road, Merced, CA, 95343, USA.
| |
Collapse
|
2
|
Romero Garcia S, Zholdassov YS, Braunschweig AB, Martini A. Reactive Simulations of Silica Functionalization with Aromatic Hydrocarbons. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:561-567. [PMID: 38112539 DOI: 10.1021/acs.langmuir.3c02785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Reactive molecular dynamics simulations are used to model the covalent functionalization of amorphous silica with aromatic hydrocarbons. Simulations show that the surface density of silanol-terminated phenyl, naphthyl, and anthracenyl molecules is lower than the maximum value calculated based on molecule geometry, and the simulation densities decrease faster with the number of aromatic rings than the geometric densities. The trends are analyzed in terms of the surface-silanol bonding configurations, tilt angles, local conformational ordering, and aggregation of surface-bound molecules under steady-state conditions. Results show that the surface density is affected by both the size and symmetry of the aromatic hydrocarbons. The correlations among bonding, orientation, and surface density identified here may guide the selection or design of molecules for functionalized surfaces.
Collapse
Affiliation(s)
- Sergio Romero Garcia
- Department of Materials and Biomaterials Science and Engineering, University of California Merced, 5200 N. Lake Road, Merced, California 95343, United States
| | - Yerzhan S Zholdassov
- The Advanced Science Research Center at the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
- The Ph.D. Program in Chemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Adam B Braunschweig
- The Advanced Science Research Center at the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
- The Ph.D. Program in Chemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Ashlie Martini
- Department of Mechanical Engineering, University of California Merced, 5200 N. Lake Road, Merced, California 95343, United States
| |
Collapse
|