1
|
Liu J, He L, Zhang W, Tang Y, Fan J, He Y. Evodiamine inhibits proliferation and induces apoptosis of nasopharyngeal carcinoma cells via the SRC/ERBB2-mediated MAPK/ERK signaling pathway. J Transl Med 2024; 22:859. [PMID: 39334374 PMCID: PMC11430305 DOI: 10.1186/s12967-024-05656-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
This study aimed to investigate the effect and potential mechanism of evodiamine (EVO) on proliferation and apoptosis of nasopharyngeal carcinoma (NPC) cells. EVO inhibited proliferation, blocked cell cycle progression, and induced apoptosis of NPC cells. There are 27 known anti-NPC targets of EVO, of which eight are core targets, namely SRC, ERBB2, STAT3, MAPK8, NOS3, CXCL8, APP, and HDAC1. Molecular docking analysis showed that the binding of EVO with its key targets (SRC, ERBB2) was good. EVO also reduced the expression of SRC and ERBB2, the key proteins p-MEK and p-ERK1/2 of the MAPK/ERK signaling pathway, and the downstream proteins PCNA and XIAP. EVO inhibited the growth of NPC xenografts in nude mice and reduced the expression levels of SRC, ERBB2, ERK1/2, p-ERK1/2, PCNA and XIAP in NPC tissue. When the MAPK/ERK signaling pathway was activated by epidermal growth factor (EGF), the expression levels of PCNA and XIAP increased, the cell proliferation index increased, and the apoptosis rate decreased in the EGF + EVO treatment group compared to treatment with EVO alone. These changes indicated that the inhibitory effect of EVO on proliferation and apoptosis of NPC cells was related to the down-regulation of SRC and ERBB2 expression, and further inhibition of the MAPK/ERK signaling pathway.
Collapse
Affiliation(s)
- Jie Liu
- Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Lan He
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Wenqing Zhang
- Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yinggang Tang
- Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jingying Fan
- Hunan University of Chinese Medicine, Changsha, 410208, China
- Hunan Provincial Engineering and Technological Research Center for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine and Protecting Visual Function, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yingchun He
- Hunan University of Chinese Medicine, Changsha, 410208, China.
- Hunan Provincial Engineering and Technological Research Center for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine and Protecting Visual Function, Hunan University of Chinese Medicine, Changsha, 410208, China.
- Hunan Provincial Key Lab for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
2
|
Ahmadi SS, Bagherzadeh O, Sargazi M, Kalantar F, Najafi MAE, Vahedi MM, Afshari AR, Sahebkar A. Harnessing the therapeutic potential of phytochemicals in neuroblastoma. Biofactors 2024. [PMID: 39189819 DOI: 10.1002/biof.2115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024]
Abstract
Neuroblastomas are the most common solid tumors outside of the brain that originate from immature neural crest cells, accounting for about 10% of all pediatric malignancies. The treatment for neuroblastomas involves a multimodal schedule, including surgery, radiation, chemotherapy, and immunotherapy. All these modalities are limited by side effects that might be severe, poor prognosis, and a high risk of recurrence. In the quest for additional therapeutic approaches, phytochemicals have attracted attention owing to their reported antitumor properties, safety, and multimechanistic mode of action. Several studies have used plant-derived bioactive compounds such as phenolics and flavonoids, suggesting modulation of biomolecules and signal transduction pathways involved in neuroblastoma. We reviewed the findings of recent preclinical and clinical studies demonstrating the effects of phytochemicals on neuroblastoma, shedding light on their molecular mechanism of action and potential therapeutic applications.
Collapse
Affiliation(s)
- Seyed Sajad Ahmadi
- Department of Ophthalmology, Khatam-Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Omid Bagherzadeh
- Department of Ophthalmology, Khatam-Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Sargazi
- Department of Ophthalmology, Alzahra Eye Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Farnaz Kalantar
- Departman of Pharmacology, Faculty of Pharmacy and Pharmaceutical sciences, Islamic Azad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Amin Elahi Najafi
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Mohammad Mahdi Vahedi
- Department of Pharmacology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Amir R Afshari
- Department of Basic Sciences, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Goya L, Mateos R. Antioxidant and Anti-inflammatory Effects of Marine Phlorotannins and Bromophenols Supportive of Their Anticancer Potential. Nutr Rev 2024:nuae066. [PMID: 38894623 DOI: 10.1093/nutrit/nuae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Following the goal of optimizing nutrition, the food industry has been continuously working on food reformulation, nutritional patterns, functional foods development, and the general promotion of a healthy lifestyle. To this end, the scientific community has been increasingly investigating natural compounds that could prevent or treat chronic diseases. Phlorotannins and bromophenols are phenolic compounds particularly present in marine organisms. There is extensive evidence that shows their potential in the prevention of noncommunicable diseases, including cancer, the second cause of mortality worldwide. Numerous studies have demonstrated the anticarcinogenic activity of polyphenolic algae compounds both in cell culture and experimental animal models. Although recent reviews are also available, the present update focuses on the most recent findings related to the antioxidant/anti-inflammatory effect of seaweed phenolics, as well as their regulatory capacity for new molecular targets. Additionally, the review addresses and discusses the close link between inflammation and oxidative stress, along with their relationship with tumor onset and progression, including the most recent findings supporting this correlation. Although clinical studies are still needed to support this evidence, phlorotannins and bromophenols constitute an emerging bioactive group with high potential as chemopreventive agents and/or potential adjuvants for existing cancer therapies.
Collapse
Affiliation(s)
- Luis Goya
- Department of Metabolism and Nutrition, Institute of Food Science, Technology, and Nutrition (ICTAN-CSIC), Spanish National Research Council (CSIC), 28040 Madrid, Spain
| | - Raquel Mateos
- Department of Metabolism and Nutrition, Institute of Food Science, Technology, and Nutrition (ICTAN-CSIC), Spanish National Research Council (CSIC), 28040 Madrid, Spain
| |
Collapse
|
4
|
Yin Q, Song SY, Bian Y, Wang Y, Deng A, Lv J, Wang Y. Unlocking the potential of pyroptosis in tumor immunotherapy: a new horizon in cancer treatment. Front Immunol 2024; 15:1381778. [PMID: 38947336 PMCID: PMC11211258 DOI: 10.3389/fimmu.2024.1381778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024] Open
Abstract
Background The interaction between pyroptosis-a form of programmed cell death-and tumor immunity represents a burgeoning field of interest. Pyroptosis exhibits a dual role in cancer: it can both promote tumor development and counteract it by activating immune responses that inhibit tumor evasion and encourage cell death. Current tumor immunotherapy strategies, notably CAR-T cell therapy and immune checkpoint inhibitors (ICIs), alongside the potential of certain traditional Chinese medicinal compounds, highlight the intricate relationship between pyroptosis and cancer immunity. As research delves deeper into pyroptosis mechanisms within tumor therapy, its application in enhancing tumor immune responses emerges as a novel research avenue. Purpose This review aims to elucidate the mechanisms underlying pyroptosis, its impact on tumor biology, and the advancements in tumor immunotherapy research. Methods A comprehensive literature review was conducted across PubMed, Embase, CNKI, and Wanfang Database from the inception of the study until August 22, 2023. The search employed keywords such as "pyroptosis", "cancer", "tumor", "mechanism", "immunity", "gasdermin", "ICB", "CAR-T", "PD-1", "PD-L1", "herbal medicine", "botanical medicine", "Chinese medicine", "traditional Chinese medicine", "immunotherapy", linked by AND/OR, to capture the latest findings in pyroptosis and tumor immunotherapy. Results Pyroptosis is governed by a complex mechanism, with the Gasdermin family playing a pivotal role. While promising for tumor immunotherapy application, research into pyroptosis's effect on tumor immunity is still evolving. Notably, certain traditional Chinese medicine ingredients have been identified as potential pyroptosis inducers, meriting further exploration. Conclusion This review consolidates current knowledge on pyroptosis's role in tumor immunotherapy. It reveals pyroptosis as a beneficial factor in the immunotherapeutic landscape, suggesting that leveraging pyroptosis for developing novel cancer treatment strategies, including those involving traditional Chinese medicine, represents a forward-looking approach in oncology.
Collapse
Affiliation(s)
- Qinan Yin
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Si-Yuan Song
- Baylor College of Medicine, Houston, TX, United States
| | - Yuan Bian
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yiping Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Anchen Deng
- Department of Neuroscience, Chengdu Shishi School, Chengdu, China
| | - Jianzhen Lv
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Han M, An J, Li S, Fan H, Wang L, Du Q, Du J, Yang Y, Song Y, Peng F. Isocucurbitacin B inhibits glioma growth through PI3K/AKT pathways and increases glioma sensitivity to TMZ by inhibiting hsa-mir-1286a. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:16. [PMID: 38835342 PMCID: PMC11149100 DOI: 10.20517/cdr.2024.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/07/2024] [Accepted: 04/24/2024] [Indexed: 06/06/2024]
Abstract
Aim: Glioma accounts for 81% of all cancers of the nervous system cancers and presents one of the most drug-resistant malignancies, resulting in a relatively high mortality rate. Despite extensive efforts, the complete treatment options for glioma remain elusive. The effect of isocucurbitacin B (isocuB), a natural compound extracted from melon pedicels, on glioma has not been investigated. This study aims to investigate the inhibitory effect of isocuB on glioma and elucidate its underlying mechanisms, with the objective of developing it as a potential therapeutic agent for glioma. Methods: We used network pharmacology and bioinformatics analysis to predict potential targets and associated pathways of isocuB in glioma. Subsequently, the inhibitory effect of isocuB on glioma and its related mechanisms were assessed through Counting Kit-8 (CCK-8), wound healing, transwell, Western blot (WB), reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and other in vitro experiments, alongside tumor formation experiments in nude mice. Results: Based on this investigation, it suggested that isocuB might inhibit the growth of gliomas through the PI3K-AKT and MAPK pathways. Additionally, we proposed that isocuB may enhance glioma drug sensitivity to temozolomide (TMZ) via modulation of hsa-mir-1286a. The CCK-8 assay revealed that isocuB exhibited inhibitory effects on U251 and U87 proliferation and outperformed TMZ. Wound healing and transwell experiments showed that isocuB inhibited the invasion and migration of U251 cells by suppressing the activity of MMP-2/9, N-cadherin, and Vimentin. The TdT-mediated dUTP-biotin nick end labeling (TUNEL) and flow cytometry (FCM) assays revealed that isocuB induced cell apoptosis through inhibition of BCL-2. Subsequently, we conducted RT-qPCR and WB experiments, which revealed that PI3K/AKT and MAPK pathways might be involved in the mechanism of the inhibition isocuB on glioma. Additionally, isocuB promoted the sensitivity of glioma U251 to TMZ by inhibiting hsa-mir-1286a. Furthermore, we constructed TMZ-resistant U251 strains and demonstrated effective inhibition by isocuB against these resistant strains. Finally, we confirmed that isocuB can inhibit tumor growth in vivo through experiments on tumors in nude mice. Conclusion: IsocuB may protect against glioma by acting on the PI3K/AKT and MAPK pathways and promote the sensitivity of glioma U251 to TMZ by inhibiting hsa-mir-1286a.
Collapse
Affiliation(s)
- Mingyu Han
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Junsha An
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Sui Li
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Integrated Traditional Chinese and Western Medicine Department, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, Sichuan, China
- Waigaoqiao Free Trade Zone, WuXi Biologics, Shanghai 214122, China
| | - Huali Fan
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, Sichuan, China
- Livzon Pharmaceutical Group Inc, Zhuhai 519090, Guangdong, China
| | - Li Wang
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qing Du
- Chongqing Western Biomedical Technology Co. Ltd., Chongqing 400039, China
| | - Junrong Du
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuxin Yang
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuqin Song
- Integrated Traditional Chinese and Western Medicine Department, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, Sichuan, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
6
|
Tang G, Huang S, Luo J, Wu Y, Zheng S, Tong R, Zhong L, Shi J. Advances in research on potential inhibitors of multiple myeloma. Eur J Med Chem 2023; 262:115875. [PMID: 37879169 DOI: 10.1016/j.ejmech.2023.115875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
Multiple myeloma (MM) is a common hematological malignancy. Although recent clinical applications of immunomodulatory drugs, proteasome inhibitors and CD38-targeting antibodies have significantly improved the outcome of MM patient with increased survival, the incidence of drug resistance and severe treatment-related complications is gradually on the rise. This review article summarizes the characteristics and clinical investigations of several MM drugs in clinical trials, including their structures, mechanisms of action, structure-activity relationships, and clinical study progress. Furthermore, the application potentials of the drugs that have not yet entered clinical trials are also reviewed. The review also outlines the future directions of MM drug development.
Collapse
Affiliation(s)
- Guoyuan Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shan Huang
- Cancer Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Ji Luo
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Yingmiao Wu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Shuai Zheng
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Rongsheng Tong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China.
| | - Ling Zhong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, 610044, China.
| | - Jianyou Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China.
| |
Collapse
|
7
|
Jabbar AA, Mothana RA, Ameen Abdulla M, Othman Abdullah F, Abdul-Aziz Ahmed K, Rizgar Hussen R, Hawwal MF, Fantoukh OI, Hasson S. Mechanisms of anti-ulcer actions of Prangos pabularia (L.) in ethanol-induced gastric ulcer in rats. Saudi Pharm J 2023; 31:101850. [PMID: 37965491 PMCID: PMC10641563 DOI: 10.1016/j.jsps.2023.101850] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023] Open
Abstract
Peptic ulcer disease is the greatest digestive disorder that has increased incidence and recurrence rates across all nations. Prangos pabularia (L.) has been well documented as a folkloric medicinal herb utilized for multiple disease conditions including gastric ulcers. Hence, the target study was investigation the gastro-protection effects of root extracts of Prangos pabularia (REPP) on ethanol-mediated stomach injury in rats. Sprague Dawley rats were clustered in 5 cages: A and B, normal and ulcer control rats pre-ingested with 1 % carboxymethyl cellulose (CMC)); C, reference rats had 20 mg/kg omeprazole; D and E, rats pre-supplemented with 250 and 500 mg/kg of REPP, respectively. After one hour, group A was given orally 1 % CMC, and groups B-E were given 100 % ethanol. The ulcer area, gastric acidity, and gastric wall mucus of all stomachs were determined. The gastric tissue homogenates were examined for antioxidant and MDA contents. Moreover, the gastric tissues were analyzed by histopathological and immunohistochemically assays. Acute toxicity results showed lack of any toxic effects or histological changes in rats exposed to 2 and 5 g/kg of REPP ingestion. The ulcer controls had extensive gastric mucosal damage with lower gastric juice and a reduced gastric pH. REPP treatment caused a significant reduction of the ethanol-induced gastric lacerations represented by an upsurge in gastric mucus and gastric wall glycoproteins (increased PAS), a decrease in the gastric acidity, leukocyte infiltration, positively modulated Bax and HSP 70 proteins, consequently lowered ulcer areas. REPP supplementation positively modulated oxidative stress (increased SOD, CAT, PGE2, and reduced MDA) and inflammatory cytokines (decreased serum TNF-α, IL-6, and increased IL-10) levels. The outcomes could be scientific evidence to back-up the folkloric use of A. Judaica as a medicinal remedy for oxidative stress-related disorders (gastric ulcer).
Collapse
Affiliation(s)
- Ahmed A.J. Jabbar
- Department of Medical Laboratory Technology, Erbil Technical Health and Medical College, Erbil Polytechnic University, Erbil 44001, Iraq
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mahmood Ameen Abdulla
- Department of Medical Microbiology, College of Science, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Fuad Othman Abdullah
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Kurdistan Region, Erbil 44001, Iraq
- Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University, Erbil 44001, Iraq
| | - Khaled Abdul-Aziz Ahmed
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Rawaz Rizgar Hussen
- Department of Medical Laboratory Science, College of Science, Knowledge University, Kirkuk Road, Erbil 44001, Iraq
| | - Mohammed F. Hawwal
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Omer I. Fantoukh
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sidgi Hasson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| |
Collapse
|
8
|
Sa P, Mohapatra P, Swain SS, Khuntia A, Sahoo SK. Phytochemical-Based Nanomedicine for Targeting Tumor Microenvironment and Inhibiting Cancer Chemoresistance: Recent Advances and Pharmacological Insights. Mol Pharm 2023; 20:5254-5277. [PMID: 37596986 DOI: 10.1021/acs.molpharmaceut.3c00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Abstract
Cancer remains the leading cause of death and rapidly evolving disease worldwide. The understanding of disease pathophysiology has improved through advanced research investigation, and several therapeutic strategies are being used for better cancer treatment. However, the increase in cancer relapse and metastatic-related deaths indicate that available therapies and clinically approved chemotherapy drugs are not sufficient to combat cancer. Further, the constant crosstalk between tumor cells and the tumor microenvironment (TME) is crucial for the development, progression, metastasis, and therapeutic response to tumors. In this regard, phytochemicals with multimodal targeting abilities can be used as an alternative to current cancer therapy by inhibiting cancer survival pathways or modulating TME. However, due to their poor pharmacokinetics and low bioavailability, the success of phytochemicals in clinical trials is limited. Therefore, developing phytochemical-based nanomedicine or phytonanomedicine can improve the pharmacokinetic profile of these phytochemicals. Herein, the molecular characteristics and pharmacological insights of the proposed phytonanomedicine in cancer therapy targeting tumor tissue and altering the characteristics of cancer stem cells, chemoresistance, TME, and cancer immunity are well discussed. Further, we have highlighted the clinical perspective and challenges of phytonanomedicine in filling the gap in potential cancer therapeutics using various nanoplatforms. Overall, we have discussed how clinical success and pharmacological insights could make it more beneficial to boost the concept of nanomedicine in the academic and pharmaceutical fields to counter cancer metastases and drug resistance.
Collapse
Affiliation(s)
- Pratikshya Sa
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana 121001, NCR Delhi, India
| | - Priyanka Mohapatra
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana 121001, NCR Delhi, India
| | | | - Auromira Khuntia
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana 121001, NCR Delhi, India
| | | |
Collapse
|
9
|
Chauhan M, Garg V, Zia G, Dutt R, Alghamdi BS, Zawawi A, Ashraf GM, Farhana A. Effect of Extraction Methods on the Antioxidant Potential and Cytotoxicity of the Combined Ethanolic Extracts of Daucus carota L., Beta vulgaris L., Phyllanthus emblica L. and Lycopersicon esculentum against Gastric Adenocarcinoma Cells. Molecules 2023; 28:6589. [PMID: 37764365 PMCID: PMC10536369 DOI: 10.3390/molecules28186589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 09/29/2023] Open
Abstract
Frequent consumption of fruits and vegetables in the daily diet may alleviate the risk of developing chronic diseases. Daucus carota L. (carrot), Beta vulgaris L. (beetroot) Phyllanthus emblica L. (amla), and Lycopersicon esculentum M (tomatoes) are traditionally consumed functional foods that contain a high concentration of antioxidants, ascorbic acid, polyphenols, and numerous phytochemicals. This study assessed how three distinct preparation methods affect the phenolic, flavonoid, carotenoid, and ascorbic acid contents, antioxidant level, and cytotoxicity of the combined fruit extract. The fruit samples were taken in the ratio of carrot (6): beetroot (2): tomato (1.5): amla (0.5) and processed into a lyophilized slurry (LS) extract, lyophilized juice (LJ) extract, and hot-air oven-dried (HAO) extract samples. The sample extracts were assessed for their phytoconstituent concentrations and antioxidant and cytotoxic potential. The total phenolic content in LS, LJ, and HAO extracts was 171.20 ± 0.02, 120.73 ± 0.02, and 72.05 ± 0.01 mg gallic acid equivalent/100 g, respectively and the total flavonoid content was 23.635 ± 0.003, 20.754 ± 0.005, and 18.635 ± 0.005 mg quercetin equivalent/100 g, respectively. Similarly, total ascorbic acid content, carotenoids, and antioxidant potential were higher in the LS and LJ extracts than in HAO. Overall, the LS extract had a substantially higher concentration of phytochemicals and antioxidants, as well as higher cytotoxic potential, compared to the LJ and HAO extracts. The LS extract was tested in the MKN-45 human gastric cancer cell line to demonstrate its effective antioxidant potential and cytotoxicity. Hence, lyophilization (freezing) based techniques are more effective than heat-based techniques in preserving the phytoconstituents and their antioxidant and cytotoxic potential.
Collapse
Affiliation(s)
- Mahima Chauhan
- Department of Pharmaceutical Sciences, M.D University, Rohtak 124001, India; (M.C.); (V.G.); (G.Z.)
| | - Vandana Garg
- Department of Pharmaceutical Sciences, M.D University, Rohtak 124001, India; (M.C.); (V.G.); (G.Z.)
| | - Ghazala Zia
- Department of Pharmaceutical Sciences, M.D University, Rohtak 124001, India; (M.C.); (V.G.); (G.Z.)
| | - Rohit Dutt
- Rohit Dutt Principal, GMN College, Ambala 133001, India;
| | - Badrah S. Alghamdi
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ayat Zawawi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ghulam Md. Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, and Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Aisha Farhana
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Aljouf 72388, Saudi Arabia
| |
Collapse
|
10
|
Bentyaghoob S, Dehghani F, Alimohammadi A, Shateri Z, Kahrizsangi MA, Nejad ET, Nouri M, Rashidkhani B. Oxidative balance score and dietary phytochemical index can reduce the risk of colorectal cancer in Iranian population. BMC Gastroenterol 2023; 23:183. [PMID: 37231404 DOI: 10.1186/s12876-023-02826-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND No previous study has assessed the association between oxidative balance score (OBS) and dietary phytochemical index (DPI) with colorectal cancer (CRC) simultaneously. Therefore, this study investigated the association between OBS and DPI with the odds of CRC among the Iranian population. METHODS This hospital-based age and sex-matched case-control study was conducted between September 2008 and January 2010 (142 controls and 71 cases were entered for analysis). New diagnosed CRC cases were selected from the Cancer Institute, Imam Khomeini Hospital of Tehran. Dietary intakes were determined by a semi-quantitative food frequency questionnaire (FFQ). Then, dietary indices were calculated by food items and nutrient intake. Logistic regression was utilized for assessing the tertiles of OBS and DPI. RESULTS In multivariate analysis, OBS was associated with a 77% reduction in CRC odds in the last tertile than the first tertile (odds ratio (OR) = 0.23, confidence interval (CI): 0.07-0.72, Ptrend = 0.017). Also, we found a 64% reduction in CRC odds in the last tertile of DPI compared to the first tertile (OR = 0.36, CI: 0.15-0.86, Ptrend = 0.015). CONCLUSIONS A diet rich in phytochemicals and anti-oxidants, including fruits and vegetables (citrus fruits, colored berries, and dark-green leafy vegetables) and whole grains, may reduce the CRC odds.
Collapse
Affiliation(s)
- Shahrooz Bentyaghoob
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fereshteh Dehghani
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Arezoo Alimohammadi
- Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zainab Shateri
- Department of Nutrition and Biochemistry, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Masoud Amini Kahrizsangi
- Department of Community Nutrition, School of Nutrition and Food Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Tavassoli Nejad
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehran Nouri
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Bahram Rashidkhani
- Department of Community Nutrition, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Naghashpour M, Dayer D, Karami H, Naghashpour M, Moghadam MT, Haeri SMJ, Suzuki K. Evaluating the Magnolol Anticancer Potential in MKN-45 Gastric Cancer Cells. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020286. [PMID: 36837487 PMCID: PMC9963572 DOI: 10.3390/medicina59020286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Background and Objectives: Combination therapy improves the effect of chemotherapy on tumor cells. Magnolol, used in treating gastrointestinal disorders, has been shown to have anti-cancer properties. We investigated the synergistic effect of cisplatin and magnolol on the viability and maintenance of MKN-45 gastric cancer cells. Materials and Methods: The toxicity of magnolol and/or cisplatin was determined using the MTT technique. The trypan blue method was used to test magnolol and/or cisplatin's effect on MKN-45 cell growth. Crystal violet staining was used to assess the treated cells' tendency for colony formation. The expression of genes linked to apoptosis, cell cycle arrest, and cell migration was examined using the qPCR method. Results: According to MTT data, using magnolol and/or cisplatin significantly reduced cell viability. The ability of the treated cells to proliferate and form colonies was also reduced considerably. Magnolol and/or cisplatin treatment resulted in a considerable elevation in Bax expression. However, the level of Bcl2 expression was dramatically reduced. p21 and p53 expression levels were significantly increased in the treated cells, while MMP-9 expression was significantly reduced. Conclusions: These findings show that magnolol has a remarkable anti-tumor effect on MKN-45 cells. In combination with cisplatin, magnolol may be utilized to overcome cisplatin resistance in gastric cancer cells.
Collapse
Affiliation(s)
- Mahsa Naghashpour
- Department of Anatomical Sciences, Medical School, Arak University of Medical Sciences, Arak 38481-7-6341, Iran
| | - Dian Dayer
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran
| | - Hadi Karami
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak 38481-7-6341, Iran
| | - Mahshid Naghashpour
- Department of Basic Medical Sciences, Faculty of Medicine, Abadan University of Medical Sciences, Abadan 6313833177, Iran
| | - Mahin Taheri Moghadam
- Department of Anatomical Science, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15753, Iran
| | - Seyed Mohammad Jafar Haeri
- Department of Anatomical Sciences, Medical School, Arak University of Medical Sciences, Arak 38481-7-6341, Iran
- Correspondence: (S.M.J.H.); (K.S.); Tel.: +98-9123276391 (S.M.J.H.)
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa 359-1192, Japan
- Correspondence: (S.M.J.H.); (K.S.); Tel.: +98-9123276391 (S.M.J.H.)
| |
Collapse
|
12
|
Ooi KX, Poo CL, Subramaniam M, Cordell GA, Lim YM. Maslinic acid exerts anticancer effects by targeting cancer hallmarks. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154631. [PMID: 36621168 DOI: 10.1016/j.phymed.2022.154631] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/14/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Natural products have long been regarded as a source of anticancer compounds with low toxicity. Evidence revealed that maslinic acid (MA), a widely distributed pentacyclic triterpene in common foodstuffs, exhibited pronounced inhibitory effects against various cancer cell lines. Most cancer cells thrive by acquiring cancer hallmarks, as coined by Hanahan and Weinberg in 2000 and 2011. PURPOSE This represents the first systematic review concerning the anticancer properties of MA as these cancer hallmarks are targeted. It aims to summarize the antineoplastic activities of MA, discuss the diverse mechanisms of action based on the effects of MA exerted on each hallmark. METHODS A comprehensive literature search was conducted using the search terms "maslinic," "cancer," "tumor," and "neoplasm," to retrieve articles from the databases MEDLINE, EMBASE, Web of Science, and Scopus published up to September 2022. Study selection was conducted by three reviewers independently from title and abstract screening until full-text evaluation. Data extraction was done by one reviewer and counterchecked by the second reviewer. RESULTS Of the 330 articles assessed, 40 papers met the inclusion criteria and revealed that MA inhibited 16 different cancer cell types. MA impacted every cancer hallmark by targeting multiple pathways. CONCLUSION This review provides insights regarding the inhibitory effects of MA against various cancers and its remarkable biological properties as a pleiotropic bioactive compound, which encourage further investigations.
Collapse
Affiliation(s)
- Kai Xin Ooi
- Centre for Cancer Research, Universiti Tunku Abdul Rahman, Kajang, 43000, Selangor, Malaysia
| | - Chin Long Poo
- Herbal Medicine Research Centre, Institute for Medical Research, Setia Alam, 40170, Selangor, Malaysia
| | - Menaga Subramaniam
- Centre for Cancer Research, Universiti Tunku Abdul Rahman, Kajang, 43000, Selangor, Malaysia
| | - Geoffrey A Cordell
- Natural Products Inc., Evanston, IL, USA; Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Yang Mooi Lim
- Centre for Cancer Research, Universiti Tunku Abdul Rahman, Kajang, 43000, Selangor, Malaysia; Department of Pre-Clinical Sciences, Universiti Tunku Abdul Rahman, Kajang, 43000, Selangor, Malaysia.
| |
Collapse
|
13
|
Malik P, Bernela M, Seth M, Kaushal P, Mukherjee TK. Recent Progress in the Hesperetin Delivery Regimes: Significance of Pleiotropic Actions and Synergistic Anticancer Efficacy. Curr Pharm Des 2023; 29:2954-2976. [PMID: 38173051 DOI: 10.2174/0113816128253609231030070414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/25/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND In the plant kingdom, flavonoids are widely distributed with multifunctional immunomodulatory actions. Hesperetin (HST) remains one of the well-studied compounds in this domain, initially perceived in citrus plants as an aglycone derivative of hesperidin (HDN). OBSERVATIONS Natural origin, low in vivo toxicity, and pleiotropic functional essence are the foremost fascinations for HST use as an anticancer drug. However, low aqueous solubility accompanied with a prompt degradation by intestinal and hepatocellular enzymes impairs HST physiological absorption. MOTIVATION Remedies attempted herein comprise the synthesis of derivatives and nanocarrier (NC)-mediated delivery. As the derivative synthesis aggravates the structural complexity, NC-driven HST delivery has emerged as a sustainable approach for its sustained release. Recent interest in HST has been due to its significant anticancer potential, characterized via inhibited cell division (proliferation), new blood vessel formation (angiogenesis), forceful occupation of neighboring cell's space (invasion), migration to erstwhile physiological locations (metastasis) and apoptotic induction. The sensitization of chemotherapeutic drugs (CDs) by HST is driven via stoichiometrically regulated synergistic actions. Purpose and Conclusion: This article sheds light on HST structure-function correlation and pleiotropic anticancer mechanisms, in unaided and NC-administered delivery in singular and with CDs synergy. The discussion could streamline the HST usefulness and long-term anticancer efficacy.
Collapse
Affiliation(s)
- Parth Malik
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Manju Bernela
- Department of Biotechnology, Guru Nanak Dev University, Amritsar-143001, India
| | - Mahima Seth
- Biotechnology Division, CSIR-IHBT, Palampur, Himachal Pradesh, India
| | - Priya Kaushal
- Biotechnology Division, CSIR-IHBT, Palampur, Himachal Pradesh, India
| | | |
Collapse
|
14
|
Guan C, Zhou X, Li H, Ma X, Zhuang J. NF-κB inhibitors gifted by nature: The anticancer promise of polyphenol compounds. Biomed Pharmacother 2022; 156:113951. [DOI: 10.1016/j.biopha.2022.113951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
|
15
|
From Cocoa to Chocolate: Effect of Processing on Flavanols and Methylxanthines and Their Mechanisms of Action. Int J Mol Sci 2022; 23:ijms232214365. [PMID: 36430843 PMCID: PMC9698929 DOI: 10.3390/ijms232214365] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Despite the health benefits associated with the ingestion of the bioactive compounds in cocoa, the high concentrations of polyphenols and methylxanthines in the raw cocoa beans negatively influence the taste, confer the astringency and bitterness, and affect the stability and digestibility of the cocoa products. It is, therefore, necessary to process cocoa beans to develop the characteristic color, taste, and flavor, and reduce the astringency and bitterness, which are desirable in cocoa products. Processing, however, affects the composition and quantities of the bioactive compounds, resulting in the modification of the health-promoting properties of cocoa beans and chocolate. In this advanced review, we sought to better understand the effect of cocoa's transformational process into chocolate on polyphenols and methylxanthine and the mechanism of action of the original flavanols and methylxanthines. More data on the cocoa processing effect on cocoa bioactives are still needed for better understanding the effect of each processing step on the final polyphenolic and methylxanthine composition of chocolate and other cocoa products. Regarding the mechanisms of action, theobromine acts through the modulation of the fatty acid metabolism, mitochondrial function, and energy metabolism pathways, while flavanols mainly act though the protein kinases and antioxidant pathways. Both flavanols and theobromine seem to be involved in the nitric oxide and neurotrophin regulation.
Collapse
|
16
|
Yao J, Ma C, Feng K, Tan G, Wen Q. Focusing on the Role of Natural Products in Overcoming Cancer Drug Resistance: An Autophagy-Based Perspective. Biomolecules 2022; 12:1565. [PMID: 36358919 PMCID: PMC9687214 DOI: 10.3390/biom12111565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 10/15/2023] Open
Abstract
Autophagy is a critical cellular adaptive response in tumor formation. Nutritional deficiency and hypoxia exacerbate autophagic flux in established malignancies, promoting tumor cell proliferation, migration, metastasis, and resistance to therapeutic interventions. Pro-survival autophagy inhibition may be a promising treatment option for advanced cancer. Furthermore, excessive or persistent autophagy is cytotoxic, resulting in tumor cell death. Targeted autophagy activation has also shown significant promise in the fight against tumor drug resistance. Several research groups have examined the ability of natural products (NPs) such as alkaloids, terpenoids, polyphenols, and anthraquinones to serve as autophagy inhibitors or activators. The data support the capacity of NPs that promote lethal autophagy or inhibit pro-survival autophagy from being employed against tumor drug resistance. This paper discusses the potential applications of NPs that regulate autophagy in the fight against tumor drug resistance, some limitations of the current studies, and future research needs and priorities.
Collapse
Affiliation(s)
- Jiaqi Yao
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Chi Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Kaixuan Feng
- Department of Anesthesiology, The Affiliated Xinhua Hospital of Dalian University, Dalian 116021, China
| | - Guang Tan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Qingping Wen
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
17
|
Bacchetti T, Campagna R, Sartini D, Cecati M, Morresi C, Bellachioma L, Martinelli E, Rocchetti G, Lucini L, Ferretti G, Emanuelli M. C. spinosa L. subsp. rupestris Phytochemical Profile and Effect on Oxidative Stress in Normal and Cancer Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196488. [PMID: 36235028 PMCID: PMC9573631 DOI: 10.3390/molecules27196488] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022]
Abstract
Spices, widely used to improve the sensory characteristics of food, contain several bioactive compounds as well, including polyphenols, carotenoids, and glucosynolates. Acting through multiple pathways, these bioactive molecules affect a wide variety of cellular processes involved in molecular mechanisms important in the onset and progress of human diseases. Capparis spinosa L. is an aromatic plant characteristic of the Mediterranean diet. Previous studies have reported that different parts (aerial parts, roots, and seeds) of C. spinosa exert various pharmacological activities. Flower buds of C. spinosa contain several bioactive compounds, including polyphenols and glucosinolates. Two different subspecies of C. spinosa L., namely, C. spinosa L. subsp. spinosa, and C. spinosa L. subsp. rupestris, have been reported. Few studies have been carried out in C. spinosa L. subsp. rupestris. The aim of our study was to investigate the phytochemical profile of floral buds of the less investigated species C. spinosa subsp. rupestris. Moreover, we investigated the effect of the extract from buds of C. spinosa subsp. rupestris (CSE) on cell proliferation, intracellular ROS levels, and expression of the antioxidant and anti-apoptotic enzyme paraoxonase-2 (PON2) in normal and cancer cells. T24 cells and Caco-2 cells were selected as models of advanced-stage human bladder cancer and human colorectal adenocarcinoma, respectively. The immortalized human urothelial cell line (UROtsa) and human dermal fibroblast (HuDe) were chosen as normal cell models. Through an untargeted metabolomic approach based on ultra-high-performance liquid chromatography quadrupole-time-of-flight mass spectrometry (UHPLC-QTOF-MS), our results demonstrate that C. spinosa subsp. rupestris flower buds contain polyphenols and glucosinolates able to exert a higher cytotoxic effect and higher intracellular reactive oxygen species (ROS) production in cancer cells compared to normal cells. Moreover, upregulation of the expression of the enzyme PON2 was observed in cancer cells. In conclusion, our data demonstrate that normal and cancer cells are differentially sensitive to CSE, which has different effects on PON2 gene expression as well. The overexpression of PON2 in T24 cells treated with CSE could represent a mechanism by which tumor cells protect themselves from the apoptotic process induced by glucosinolates and polyphenols.
Collapse
Affiliation(s)
- Tiziana Bacchetti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
- Correspondence: (T.B.); (G.F.)
| | - Roberto Campagna
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Davide Sartini
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Monia Cecati
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Camilla Morresi
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Luisa Bellachioma
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Erika Martinelli
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Gabriele Rocchetti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Gianna Ferretti
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
- Correspondence: (T.B.); (G.F.)
| | - Monica Emanuelli
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
- New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, 60131 Ancona, Italy
| |
Collapse
|