1
|
Pi X, Liu J, Ren S, Zhu L, Li B, Zhang B. Research progress in ultrasound and its assistance treatment to reduce food allergenicity: Mechanisms, influence factor, application and prospect. Int J Biol Macromol 2024; 278:134687. [PMID: 39137859 DOI: 10.1016/j.ijbiomac.2024.134687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 08/15/2024]
Abstract
Food allergy is a serious public health problem, which is mainly induced by food allergens (mainly allergenic proteins). Ultrasound can change protein structure, suggesting its potential to decrease food allergenicity. The review concluded the mechanism and influence factors of ultrasound to reduce food allergenicity. The effects of ultrasound alone on some major allergenic foods such as tree nuts, shellfish, fish, egg, soy, milk, and wheat were also discussed. Moreover, ultrasound pre- and post-treatments were combined with heating, glycation, germination, hydrolysis, fermentation, irradiation and polyphenol treatment for reducing food allergenicity were also evaluated. It was found that ultrasound induced structural changes even degradation of protein to reduce the allergenicity mainly due to cavitation effects. The reduction of allergenicity through ultrasound alone was affected by ultrasound power, time, frequency and food types, while, apart from these factors, it was affected by ultrasound order and the assisted technologies conditions during ultrasound-assisted technologies. Compared to ultrasound alone treatment, the ultrasound-assisted technology exhibited high efficiency of allergenicity reduction because ultrasound treatment caused protein unfolding to accelerate allergen modification of the assisted technologies for masking and disrupting more epitopes. Thus, ultrasound treatment, especially ultrasound-assisted technologies under appropriate conditions, was promising for producing hypoallergenic foods.
Collapse
Affiliation(s)
- Xiaowen Pi
- College of Food Science, Southwest University, Chongqing 400715, China; Modern"Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing 400715, China.
| | - Jiayuan Liu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Siyu Ren
- Westa College, Southwest University, Chongqing 400715, China
| | - Lilin Zhu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Bowen Li
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Binjia Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Modern"Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing 400715, China
| |
Collapse
|
2
|
Ma J, Tong P, Chen Q, Liu J, Li H, Long F. Covalent conjugation with polyphenol reduced the sensitization of walnut and ameliorated allergy by enhancing intestinal epithelial barrier in mice. Food Chem 2024; 439:138191. [PMID: 38091784 DOI: 10.1016/j.foodchem.2023.138191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/22/2023] [Accepted: 12/08/2023] [Indexed: 01/10/2024]
Abstract
In order to reduce the sensitization of walnut protein (WP), the effects of the interaction between WP and (-)-Epigallocatechin gallate (EGCG), quercetin, trans-ferulic acid, and resveratrol were investigated. Covalent and non-covalent conjugations were compared. The results suggested that covalent conjugation reduced the free amino acid content, sulfhydryl content, and surface hydrophobicity. When compared to non-covalent conjugation, covalent modification showed a lower IgE binding capacity, accompanied by changes in protein conformation. Moreover, animal experiments revealed that there were up-regulation of transforming growth factor-β, T-box expressed in t cells, and forkhead transcription factor Foxp3 mRNA expression, and down-regulation of IL-4, IL-17, GATA binding protein 3 and retinoid-related orphan nuclear receptor γt mRNA expression in the conjugate groups. These results suggested that covalent conjugation of polyphenols, especially EGCG, likely ameliorated allergy by promoting Th1/Th2 and Treg/Th17 balance and alleviating allergy-induced intestinal barrier damage, which might be a support in reducing the allergenicity of WP.
Collapse
Affiliation(s)
- Jing Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Pengyan Tong
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Qiwen Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Jing Liu
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang 550005, China
| | - Huzhong Li
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, China
| | - Fangyu Long
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
3
|
Mousavi Khaneghah A, Nematollahi A, AbdiMoghadam Z, Davoudi M, Mostashari P, Marszałek K, Aliyeva A, Javanmardi F. Research progress in the application of emerging technology for reducing food allergens as a global health concern: A systematic review. Crit Rev Food Sci Nutr 2023; 64:9789-9804. [PMID: 37233211 DOI: 10.1080/10408398.2023.2216800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Since the turn of the century, innovative food processing techniques have quickly risen to the top of the commercial and economic prominence food industry's priority list due to their many benefits over more conventional approaches. Compared to traditional food processing techniques, these innovative procedures retain better the distinctive aspects of food, including its organoleptic and nutritional attributes. Concurrently, there has been a discernible increase in the number of people, particularly infants and young children, who are allergic to certain foods. Although this is widely associated with shifting economic conditions in industrialized and developing countries, the rise of urbanization, the introduction of new eating patterns, and developments in food processing, it still needs to be determined how exactly these factors play a part. Under this circumstance, given the widespread presence of allergens that cause IgE-mediated reactions, it is critical to understand how the structural changes in protein as food is processed to determine whether the specific processing technique (conventional and novel) will be appropriate. This article discusses the impact of processing on protein structure and allergenicity and the implications of current research and methodologies for developing a platform to study future pathways to decrease or eliminate allergenicity in the general population.
Collapse
Affiliation(s)
- Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, State Research Institute, Warsaw, Poland
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
| | - Amene Nematollahi
- Department of Food Safety and Hygiene, School of Health, Fasa University of Medical Sciences, Fasa, Iran
| | - Zohreh AbdiMoghadam
- Department of Food Science and Nutrition, Faculty of Medicine, Determinants of Health Research Center, Gonabad University of Medical Science, Gonabad, Iran
| | - Mahshad Davoudi
- Department of Food Science and Technology, Tarbiat Modares University, Tehran, Iran
| | - Parisa Mostashari
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Krystian Marszałek
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, State Research Institute, Warsaw, Poland
| | - Aynura Aliyeva
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
| | - Fardin Javanmardi
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Semenov K, Taraskin A, Yurchenko A, Baranovskaya I, Purvinsh L, Gyulikhandanova N, Vasin A. Uncertainty Estimation for Quantitative Agarose Gel Electrophoresis of Nucleic Acids. SENSORS (BASEL, SWITZERLAND) 2023; 23:1999. [PMID: 36850595 PMCID: PMC9966319 DOI: 10.3390/s23041999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
This paper considers the evaluation of uncertainty of quantitative gel electrophoresis. To date, such uncertainty estimation presented in the literature are based on the multiple measurements performed for assessing the intra- and interlaboratory reproducibility using standard samples. This paper shows how to estimate the uncertainty in cases where we cannot study scattering components of the results. The first point is dedicated to a case where we have standard samples (the direct expressions are shown). The second point considers the situation when standard samples are absent (the algorithm for estimating the lower bound for uncertainty is discussed). The role of the data processing algorithm is demonstrated.
Collapse
Affiliation(s)
- Konstantin Semenov
- Peter the Great St. Petersburg Polytechnic University, 29, Polytechnicheskaya Str., 195251 St. Petersburg, Russia
| | - Aleksandr Taraskin
- Peter the Great St. Petersburg Polytechnic University, 29, Polytechnicheskaya Str., 195251 St. Petersburg, Russia
- Smorodintsev Research Institute of Influenza, 15/17, Prof. Popov Str., 197376 St. Petersburg, Russia
| | - Alexandra Yurchenko
- Peter the Great St. Petersburg Polytechnic University, 29, Polytechnicheskaya Str., 195251 St. Petersburg, Russia
| | | | - Lada Purvinsh
- The University of Chicago, 947 E. 58th Str., Chicago, IL 60637, USA
| | - Natalia Gyulikhandanova
- Peter the Great St. Petersburg Polytechnic University, 29, Polytechnicheskaya Str., 195251 St. Petersburg, Russia
- Smorodintsev Research Institute of Influenza, 15/17, Prof. Popov Str., 197376 St. Petersburg, Russia
| | - Andrey Vasin
- Peter the Great St. Petersburg Polytechnic University, 29, Polytechnicheskaya Str., 195251 St. Petersburg, Russia
- Smorodintsev Research Institute of Influenza, 15/17, Prof. Popov Str., 197376 St. Petersburg, Russia
| |
Collapse
|