1
|
Qian Z, Hou D, Gao S, Wang X, Yu J, Dong J, Sun C. Toxic effects and mechanisms of chronic cadmium exposure on Litopenaeus vannamei growth performance based on combined microbiome and metabolome analysis. CHEMOSPHERE 2024; 361:142578. [PMID: 38857631 DOI: 10.1016/j.chemosphere.2024.142578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/28/2024] [Accepted: 06/08/2024] [Indexed: 06/12/2024]
Abstract
Cadmium (Cd) pollution seriously affects marine organisms' health and poses a threat to food safety. Although Cd pollution has attracted widespread attention in aquaculture, little is known about the toxic mechanisms of chronic Cd exposure on shrimp growth performance. The study investigated the combined effects of chronic exposure to Cd of different concentrations including 0, 75, 150, and 300 μg/L for 30 days on the growth performance, tissue bioaccumulation, intestinal microbiology, and metabolic responses of Litopenaeus vannamei. The results revealed that the growth was significantly inhibited under exposure to 150 and 300 μg/L Cd2+. The bioaccumulation in gills and intestines respectively showed an increasing and inverted "U" shaped trend with increasing Cd2+ concentration. Chronic Cd altered the intestinal microflora with a significant decrease in microbial richness and increasing trends in the abundances of the potentially pathogenic bacteria Vibrio and Maribacter at exposure to 75 and 150 μg/L Cd2+, and Maribacter at 300 μg/L. In addition, chronic Cd interfered with intestinal metabolic processes. The expressions of certain metabolites associated with growth promotion and enhanced antioxidant power, including N-methyl-D-aspartic acid, L-malic acid, guanidoacetic acid, betaine, and gluconic acid were significantly down-regulated, especially at exposure to 150 and 300 μg/L Cd2+, and were negatively correlated with Vibrio and Maribacter abundance levels. In summary, chronic Cd exposure resulted in severe growth inhibition and increased Cd accumulation in shrimp tissues. Increased levels of intestinal pathogenic bacteria and decreased levels of growth-promoting metabolites may be the key causes of growth inhibition. Harmful bacteria Vibrio and Maribacter may be associated with the inhibition of growth-promoting metabolite expression and may be involved in disrupting intestinal metabolic functions, ultimately impairing shrimp growth potential. This study sheds light on the potential toxicological mechanisms of chronic Cd inhibition on shrimp growth performance, offering new insights into Cd toxicity studies in aquaculture.
Collapse
Affiliation(s)
- Zhaoying Qian
- School of Economics, Guizhou University of Finance and Economics, Guiyang, 550025, Guizhou, China
| | - Danqing Hou
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China
| | - Shan Gao
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China
| | - Xuejie Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China
| | - Jianbo Yu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China
| | - Jiaxin Dong
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China
| | - Chengbo Sun
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China.
| |
Collapse
|
2
|
Zhao T, Chen Q, Chen Z, He T, Zhang L, Huang Q, Liu W, Zeng X, Zhang Y. Anti-obesity effects of mulberry leaf extracts on female high-fat diet-induced obesity: Modulation of white adipose tissue, gut microbiota, and metabolic markers. Food Res Int 2024; 177:113875. [PMID: 38225139 DOI: 10.1016/j.foodres.2023.113875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024]
Abstract
Mulberry leaves (MLs) are reported to have beneficial effects in modulating obesity in male models. However, the impact of different types of mulberry leaf extracts (MLEs) on female models, specifically their influence on adipocytes, gut microbiota, and related metabolic markers, remains poorly understood. In this study, we observed a strong correlation between the total phenolic content (TPC), antioxidant and adipocyte modulation effects of water extracted MLEs. HB-W (water-extracted baiyuwang) and HY-W (water-extracted Yueshen) demonstrated remarkable inhibition effects on adipocytes in 3 T3-L1 adipocytes model. Moreover, MLEs effectively reduced the levels of triglycerides (TG), non-esterified fatty acids (NEFA), and total cholesterol (T-CHO) in adipocytes in vitro. In vivo experiments conducted on female mice with high fat diet (HFD)-induced obesity revealed the anti-obesity effects of HB-W and HY-W, leading to a significant decrease in weight gain rates and notable influence on the ratios of adipose tissue, particularly white adipose tissue (WAT). Gene expression analysis demonstrated the up-regulation of WAT-related genes (Pla2g2a and Plac8) by HB-W, while HY-W supplementation showed beneficial effects on the regulation of blood sugar-related genes. Furthermore, both HB-W and HY-W exhibited modulatory effects on obesity-related gut microbiota (Firmicutes-to-Bacteroidetes ratio) and short chain fatty acid (SCFA) contents. Importantly, they also mitigated abnormalities in liver function and uncoupling protein 1 (UPC1) expression. Overall, our findings underscore the anti-obesity effects of MLEs in female rats with high-fat diet-induced obesity.
Collapse
Affiliation(s)
- Tiantian Zhao
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, Guangdong 510610, China; Department of Food Science, Rutgers University, New Brunswick, NJ 08901, United States.
| | - Qirong Chen
- Guangzhou Coobase Biotechnology Co., Ltd, Guangzhou, Guangdong 511493, China
| | - Zhang Chen
- Guangzhou Coobase Biotechnology Co., Ltd, Guangzhou, Guangdong 511493, China
| | - Taoping He
- Guangzhou Coobase Biotechnology Co., Ltd, Guangzhou, Guangdong 511493, China
| | - Lijun Zhang
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, Guangdong 510610, China
| | - Qingrong Huang
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, United States
| | - Weifeng Liu
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, Guangdong 510610, China
| | - Xi Zeng
- Guangzhou Institute for Food Control, Guangzhou, Guangdong 511400, China
| | - Yehui Zhang
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, Guangdong 510610, China.
| |
Collapse
|
3
|
Ren X, Xu J, Xu Y, Wang Q, Huang K, He X. Artemether Attenuates Gut Barrier Dysfunction and Intestinal Flora Imbalance in High-Fat and High-Fructose Diet-Fed Mice. Nutrients 2023; 15:4860. [PMID: 38068719 PMCID: PMC10707945 DOI: 10.3390/nu15234860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Intestinal inflammation is a key determinant of intestinal and systemic health, and when our intestines are damaged, there is disruption of the intestinal barrier, which in turn induces a systemic inflammatory response. However, the etiology and pathogenesis of inflammatory diseases of the intestine are still not fully understood. Artemether (ART), one of the artemisinin derivatives, has been widely used to treat malaria. Nevertheless, the effect of ART on intestinal inflammation remains unclear. The present study intended to elucidate the potential mechanism of ART in diet-induced intestinal injury. A high-fat and high-fructose (HFHF) diet-induced mouse model of intestinal injury was constructed, and the mice were treated with ART to examine their role in intestinal injury. RT-qPCR, Western blotting, immunohistochemical staining, and 16S rRNA gene sequencing were used to investigate the anti-intestinal inflammation effect and mechanism of ART. The results indicated that ART intervention may significantly ameliorate the intestinal flora imbalance caused by the HFHF diet and alleviate intestinal barrier function disorders and inflammatory responses by raising the expression of tight junction proteins ZO-1 and occludin and decreasing the expression of pro-inflammatory factors TNF-α and IL-1β. Moreover, ART intervention restrained HFHF-induced activation of the TLR4/NF-κB p65 pathway in colon tissue, which may be concerned with the potential protective effect of ART on intestinal inflammation. ART might provide new insights into further explaining the mechanism of action of other metabolic diseases caused by intestinal disorders.
Collapse
Affiliation(s)
- Xinxin Ren
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jia Xu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ye Xu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qin Wang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100083, China
| | - Xiaoyun He
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100083, China
| |
Collapse
|
4
|
Fu Y, Li S, Xiao Y, Liu G, Fang J. A Metabolite Perspective on the Involvement of the Gut Microbiota in Type 2 Diabetes. Int J Mol Sci 2023; 24:14991. [PMID: 37834439 PMCID: PMC10573635 DOI: 10.3390/ijms241914991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Type 2 diabetes (T2D) is a commonly diagnosed condition that has been extensively studied. The composition and activity of gut microbes, as well as the metabolites they produce (such as short-chain fatty acids, lipopolysaccharides, trimethylamine N-oxide, and bile acids) can significantly impact diabetes development. Treatment options, including medication, can enhance the gut microbiome and its metabolites, and even reverse intestinal epithelial dysfunction. Both animal and human studies have demonstrated the role of microbiota metabolites in influencing diabetes, as well as their complex chemical interactions with signaling molecules. This article focuses on the importance of microbiota metabolites in type 2 diabetes and provides an overview of various pharmacological and dietary components that can serve as therapeutic tools for reducing the risk of developing diabetes. A deeper understanding of the link between gut microbial metabolites and T2D will enhance our knowledge of the disease and may offer new treatment approaches. Although many animal studies have investigated the palliative and attenuating effects of gut microbial metabolites on T2D, few have established a complete cure. Therefore, conducting more systematic studies in the future is necessary.
Collapse
Affiliation(s)
| | | | | | - Gang Liu
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (Y.F.); (S.L.); (Y.X.)
| | - Jun Fang
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (Y.F.); (S.L.); (Y.X.)
| |
Collapse
|