1
|
Ruiz-Guerrero CD, Estrada-Osorio DV, Gutiérrez A, Espinosa-Lagunes FI, Escalona-Villalpando RA, Luna-Bárcenas G, Molina A, Arenillas A, Arriaga LG, Ledesma-García J. Novel cobalt-based aerogels for uric acid detection in fluids at physiological pH. Biosens Bioelectron 2025; 267:116850. [PMID: 39423707 DOI: 10.1016/j.bios.2024.116850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
A sensor for uric acid (UA) based on the urate oxidase enzyme (UOx) immobilized in novel Co-based aerogels with transition metals synthesized by the sol-gel method was developed and evaluated. The Co-based aerogels: Co, Ni-Co and Pd-Co were physicochemically characterized by XRD and HR-TEM. The surface area values of 53, 57 and 66 m2 g-1 were determined for Co, Ni-Co and Pd-Co, respectively by N2 adsorption-desorption technique. Co-based aerogels were mixed by cross-linking with UOx enzymes and electrochemically characterized in buffers at pH 7.4 and 5.6 (pH values reported for biological fluids such as blood and sweat) in the presence of different uric acid concentrations. Co-based aerogels with UOx showed improved performance as a uric acid biosensor compared to using the enzyme alone. At a pH of 7.4, a higher sensitivity of 11 μA μM-1 was obtained with Pd-Co/UOx, 1.6 times higher than with UOx. At a pH value of 5.6, the highest sensitivity is achieved with Ni-Co/UOx. Stability and selectivity tests were performed in the presence of biological interferents without significant changes in the sensor. These results indicate a pleasing synergistic activity between Co-based aerogels and the enzyme.
Collapse
Affiliation(s)
- Carlos D Ruiz-Guerrero
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, 76010, Santiago de Querétaro, Mexico
| | - D V Estrada-Osorio
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, 76010, Santiago de Querétaro, Mexico
| | - A Gutiérrez
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, 76010, Santiago de Querétaro, Mexico
| | - F I Espinosa-Lagunes
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, 76010, Santiago de Querétaro, Mexico
| | - R A Escalona-Villalpando
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, 76010, Santiago de Querétaro, Mexico
| | - G Luna-Bárcenas
- Tecnológico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, 76130, Santiago de Querétaro, Mexico
| | - A Molina
- Tecnológico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, 76130, Santiago de Querétaro, Mexico
| | - A Arenillas
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, Francisco Pintado Fe, 26, 33011, Oviedo, Spain
| | - L G Arriaga
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, 76703, Santiago de Querétaro, Mexico
| | - J Ledesma-García
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, 76010, Santiago de Querétaro, Mexico.
| |
Collapse
|
2
|
Dhahi TS, Yousif Dafhalla AK, Al-Mufti AW, Elobaid ME, Adam T, Gopinath SC. Application of Nanobiosensor engineering in the diagnosis of neurodegenerative disorders. RESULTS IN ENGINEERING 2024; 24:102790. [DOI: 10.1016/j.rineng.2024.102790] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Jeong SG, Kim J, Son H, Kim JS, Kim JH, Kim BG, Lee CS. Fully autonomous water monitoring by plant-inspired robots. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135641. [PMID: 39208628 DOI: 10.1016/j.jhazmat.2024.135641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Developing countries struggle with water quality management owing to poor infrastructure, limited expertise, and financial constraints. Traditional water testing, relying on periodic site visits and manual sampling, is impractical for continuous wide-area monitoring and fails to detect sudden heavy metal contamination. To address this, plant-inspired robots capable of fully autonomous water quality monitoring are proposed. Constructed from paper, the robot absorbs surrounding water through its roots. This paper robot is controlled by paper-based microfluidic logic that sends absorbed water to petal-shaped actuators only when the water is polluted by heavy metals. This triggers the actuators to swell and bend like a blooming flower, visually signaling contamination to local residents. In tests with copper-contaminated water, the robotic flower's diameter increased from 4.69 cm to 14.89 cm, a more than threefold expansion (217.25 %). This significant blooming movement serves as a highly visible and easily recognizable indicator of water pollution, even for the public. Furthermore, the paper robot can be mass-produced at a low cost (∼$0.2 per unit) and deployed over large areas. Once installed, the paper robot operates autonomously using surrounding water as a power source, eliminating the need for external electrical infrastructure and expert intervention. Therefore, this autonomous robot offers a new approach to water quality monitoring suitable for resource-limited environments, such as Sub-Saharan Africa.
Collapse
Affiliation(s)
- Seong-Geun Jeong
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea; Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Jingyeong Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Huiseong Son
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jae Seong Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ji-Hyun Kim
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Byung-Gee Kim
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Chang-Soo Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
4
|
Bindu A, Bhadra S, Nayak S, Khan R, Prabhu AA, Sevda S. Bioelectrochemical biosensors for water quality assessment and wastewater monitoring. Open Life Sci 2024; 19:20220933. [PMID: 39220594 PMCID: PMC11365470 DOI: 10.1515/biol-2022-0933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 09/04/2024] Open
Abstract
Bioelectrochemical biosensors offer a promising approach for real-time monitoring of industrial bioprocesses. Many bioelectrochemical biosensors do not require additional labelling reagents for target molecules. This simplifies the monitoring process, reduces costs, and minimizes potential contamination risks. Advancements in materials science and microfabrication technologies are paving the way for smaller, more portable bioelectrochemical biosensors. This opens doors for integration into existing bioprocessing equipment and facilitates on-site, real-time monitoring capabilities. Biosensors can be designed to detect specific heavy metals such as lead, mercury, or chromium in wastewater. Early detection allows for the implementation of appropriate removal techniques before they reach the environment. Despite these challenges, bioelectrochemical biosensors offer a significant leap forward in wastewater monitoring. As research continues to improve their robustness, selectivity, and cost-effectiveness, they have the potential to become a cornerstone of efficient and sustainable wastewater treatment practices.
Collapse
Affiliation(s)
- Anagha Bindu
- Department of Biotechnology, National Institute of Technology Warangal, Warangal506004, Telangana, India
| | - Sudipa Bhadra
- Department of Biotechnology, National Institute of Technology Warangal, Warangal506004, Telangana, India
| | - Soubhagya Nayak
- Department of Biotechnology, National Institute of Technology Warangal, Warangal506004, Telangana, India
| | - Rizwan Khan
- Department of Biotechnology, National Institute of Technology Warangal, Warangal506004, Telangana, India
| | - Ashish A. Prabhu
- Department of Biotechnology, National Institute of Technology Warangal, Warangal506004, Telangana, India
| | - Surajbhan Sevda
- Department of Biotechnology, National Institute of Technology Warangal, Warangal506004, Telangana, India
| |
Collapse
|
5
|
Chen P, Li N, Chen X, Liang T, He P, Wang D, Hu H. Mass measurement under medium vacuum in optically levitated nanoparticles based on Maxwell speed distribution law. OPTICS EXPRESS 2024; 32:21806-21819. [PMID: 38859526 DOI: 10.1364/oe.525371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/15/2024] [Indexed: 06/12/2024]
Abstract
As one of the directions of optical levitation technology, the mass measurement of micro-nano particles has always been a research hotspot in extremely weak mechanical measurements. When nanoscale particles are trapped in an optical trap, parameters such as density, diameter, and shape are unknown. Here we propose what we believe to be a new method to measure mass by fitting particle motion information to the Maxwell speed distribution law, with an accuracy better than 7% at 10 mbar. This method has the characteristics of requiring no external driving force, no precise natural frequency, no prior information such as density, and non-destructive testing within the medium vacuum range. With the increasing iterations, the uncertainty of mass measurement is reduced, and the accuracy of mass measurement of levitated particles is verified under multiple air pressures. It provides what we believe is a new method for the future non-destructive testing of nanoscale particles, and provides an apparently new way for the sensing measurement and metrology application fields of levitation dynamics systems.
Collapse
|
6
|
Hughes WJ, Doherty TH, Blackmore JA, Horak P, Goodwin JF. Mode mixing and losses in misaligned microcavities. OPTICS EXPRESS 2023; 31:32619-32636. [PMID: 37859061 DOI: 10.1364/oe.496981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/11/2023] [Indexed: 10/21/2023]
Abstract
We present a study on the optical losses of Fabry-Pérot cavities subject to realistic transverse mirror misalignment. We consider mirrors of the two most prevalent surface forms: idealised spherical depressions, and Gaussian profiles generated by laser ablation. We first describe the mode mixing phenomena seen in the spherical mirror case and compare to the frequently-used clipping model, observing close agreement in the predicted diffraction loss, but with the addition of protective mode mixing at transverse degeneracies. We then discuss the Gaussian mirror case, detailing how the varying surface curvature across the mirror leads to complex variations in round trip loss and mode profile. In light of the severe mode distortion and strongly elevated loss predicted for many cavity lengths and transverse alignments when using Gaussian mirrors, we suggest that the consequences of mirror surface profile are carefully considered when designing cavity experiments.
Collapse
|
7
|
Gong L, Cretella A, Lin Y. Microfluidic systems for particle capture and release: A review. Biosens Bioelectron 2023; 236:115426. [PMID: 37276636 DOI: 10.1016/j.bios.2023.115426] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/07/2023]
Abstract
Microfluidic technology has emerged as a promising tool in various applications, including biosensing, disease diagnosis, and environmental monitoring. One of the notable features of microfluidic devices is their ability to selectively capture and release specific cells, biomolecules, bacteria, and particles. Compared to traditional bulk analysis instruments, microfluidic capture-and-release platforms offer several advantages, such as contactless operation, label-free detection, high accuracy, good sensitivity, and minimal reagent requirements. However, despite significant efforts dedicated to developing innovative capture mechanisms in the past, the release and recovery efficiency of trapped particles have often been overlooked. Many previous studies have focused primarily on particle capture techniques and their efficiency, disregarding the crucial role of successful particle release for subsequent analysis. In reality, the ability to effectively release trapped particles is particularly essential to ensure ongoing, high-throughput analysis. To address this gap, this review aims to highlight the importance of both capture and release mechanisms in microfluidic systems and assess their effectiveness. The methods are classified into two categories: those based on physical principles and those using biochemical approaches. Furthermore, the review offers a comprehensive summary of recent applications of microfluidic platforms specifically designed for particle capture and release. It outlines the designs and performance of these devices, highlighting their advantages and limitations in various target applications and purposes. Finally, the review concludes with discussions on the current challenges faced in the field and presents potential future directions.
Collapse
Affiliation(s)
- Liyuan Gong
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI, 02881, USA
| | - Andrew Cretella
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI, 02881, USA
| | - Yang Lin
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI, 02881, USA.
| |
Collapse
|