1
|
Wang C, Wang T, Gao Y, Tao Q, Ye W, Jia Y, Zhao X, Zhang B, Zhang Z. Multiplexed immunosensing of cancer biomarkers on a split-float-gate graphene transistor microfluidic biochip. LAB ON A CHIP 2024; 24:317-326. [PMID: 38087953 DOI: 10.1039/d3lc00709j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
This work reports the development of a novel microfluidic biosensor using a graphene field-effect transistor (GFET) design for the parallel label-free analysis of multiple biomarkers. Overcoming the persistent challenge of constructing μm2-sized FET sensitive interfaces that incorporate multiple receptors, we implement a split-float-gate structure that enables the manipulation of multiplexed biochemical functionalization using microfluidic channels. Immunoaffinity biosensing experiments are conducted using the mixture samples containing three liver cancer biomarkers, carcinoembryonic antigen (CEA), α-fetoprotein (AFP), and parathyroid hormone (PTH). The results demonstrate the capability of our label-free biochip to quantitatively detect multiple target biomarkers simultaneously by observing the kinetics in 10 minutes, with the detection limit levels in the nanomolar range. This microfluidic biosensor provides a valuable analytical tool for rapid multi-target biosensing, which can be potentially utilized for domiciliary tests of cancer screening and prognosis, obviating the need for sophisticated instruments and professional operations in hospitals.
Collapse
Affiliation(s)
- Cheng Wang
- Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin 300387, China.
- Department of Intelligence Science and Technology, College of Artificial Intelligence, Tianjin Normal University, Tianjin 300387, China
| | - Tao Wang
- Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin 300387, China.
- Department of Communication Engineering, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin 300387, China
| | - Yujing Gao
- Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin 300387, China.
- Department of Intelligence Science and Technology, College of Artificial Intelligence, Tianjin Normal University, Tianjin 300387, China
| | - Qiya Tao
- Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin 300387, China.
- Department of Communication Engineering, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin 300387, China
| | - Weixiang Ye
- Center for Theoretical Physics, Hainan University, Haikou 570228, China.
- Department of Physics, School of Physical Science and Optoelectrical Engineering, Hainan University, Haikou 570228, China
| | - Yuan Jia
- Industrialization Center of Micro/Nano ICs and Devices, Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen 518118, China.
| | - Xiaonan Zhao
- Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin 300387, China.
- Department of Communication Engineering, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin 300387, China
| | - Bo Zhang
- Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin 300387, China.
- Department of Communication Engineering, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin 300387, China
| | - Zhixing Zhang
- Industrialization Center of Micro/Nano ICs and Devices, Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen 518118, China.
| |
Collapse
|
2
|
Xu Y, Zhang Y, Li N, Yang S, Chen J, Hou J, Hou C, Huo D. An ultrasensitive ratiometric electrochemical aptasensor based on metal-organic frameworks and nanoflower-like Bi 2CuO 4 for human epidermal growth factor receptor 2 detection. Bioelectrochemistry 2023; 154:108542. [PMID: 37591183 DOI: 10.1016/j.bioelechem.2023.108542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/28/2023] [Accepted: 08/06/2023] [Indexed: 08/19/2023]
Abstract
An ultra-sensitive ratiometric electrochemical aptasensor was constructed based on metal-organic frameworks (MOFs) and bimetallic oxides for the detection of the human epidermal growth factor receptor 2 (HER2), a breast cancer marker. The aluminum metal-organic framework (Al-MOF) and cerium-metal-organic framework (Ce-MOF) have higher specific surface area, which is conducive to load more aptamers or complementary DNA (cDNA), and realize the amplification of internal reference signal Fc. Furthermore, nanoflower-like bismuth copper oxide (Bi2CuO4) with abundant active sites was introduced to modify more aptamers on its surface, which were then fixed to the glassy carbon electrode (GCE) to amplify the detection signal. The quantitative detection of HER2 was achieved by differential pulse voltammetry (DPV), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The materials were characterized by scanning electron microscope, transmission electron microscope, Zeta potential analyzer, X-ray diffraction and X-ray photoelectron spectroscopy. The ratiometric electrochemical aptasensor based on nanomaterial and chain displacement signal amplification technology could discern HER2 in a very wide range (0.001-20.0 ng/mL) with an extremely low detection limit (0.049 pg/mL) and has demonstrated good performance in clinical serum analysis. This strategy also provides a feasible idea for sensitive analysis of other clinical tumor markers.
Collapse
Affiliation(s)
- Ying Xu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Ya Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Ning Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Siyi Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Jian Chen
- Chongqing University Three Gorges Hospital, Chongqing 404000, PR China
| | - Jingzhou Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China; Postdoctoral Research Station, Chongqing University, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, PR China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China; Postdoctoral Research Station, Chongqing University, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
3
|
Qiu M, Ren Y, Huang L, Zhu X, Liang T, Li M, Tang D. FeNC nanozyme-based electrochemical immunoassay for sensitive detection of human epidermal growth factor receptor 2. Mikrochim Acta 2023; 190:378. [PMID: 37672131 DOI: 10.1007/s00604-023-05964-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023]
Abstract
The proof-of-concept of sensitive electrochemical immunoassay for the quantitative monitoring of human epidermal growth factor receptor 2 (HER2) is reported. The assay is carried out on iron nitrogen-doped carbon (FeNC) nanozyme-modified screen-printed carbon electrode using chronoamperometry. Introduction of target HER2 can induce the sandwiched immunoreaction between anti-HER2 monoclonal antibody-coated microplate and biotinylated anti-HER2 polyclonal antibody. Thereafter, streptavidin-glucose oxidase (GOx) conjugate is bonded to the detection antibody. Upon addition of glucose, 3,3',5,5'-tetramethylbenzidine (TMB) is oxidized through the produced H2O2 with the assistance of GOx and FeNC nanozyme. The oxidized TMB is determined via chronoamperometry. Experimental results revealed that electrochemical immunosensing system exhibited good amperometric response, and allowed the detection of target HER2 as low as 4.5 pg/mL. High specificity and long-term stability are acquired with FeNC nanozyme-based sensing strategy. Importantly, our system provides a new opportunity for protein diagnostics.
Collapse
Affiliation(s)
- Minghao Qiu
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Yuqing Ren
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Lumin Huang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Xueying Zhu
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Tikai Liang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Meijin Li
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China.
| | - Dianping Tang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China.
| |
Collapse
|
4
|
Gutiérrez-Gálvez L, Sulleiro MV, Gutiérrez-Sánchez C, García-Nieto D, Luna M, Pérez EM, García-Mendiola T, Lorenzo E. MoS 2-Carbon Nanodots as a New Electrochemiluminescence Platform for Breast Cancer Biomarker Detection. BIOSENSORS 2023; 13:bios13030348. [PMID: 36979560 PMCID: PMC10046281 DOI: 10.3390/bios13030348] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 05/27/2023]
Abstract
In this work, we present the combination of two different types of nanomaterials, 2D molybdenum disulfide nanosheets (MoS2-NS) and zero-dimensional carbon nanodots (CDs), for the development of a new electrochemiluminescence (ECL) platform for the early detection and quantification of the biomarker human epidermal growth factor receptor 2 (HER2), whose overexpression is associated with breast cancer. MoS2-NS are used as an immobilization platform for the thiolated aptamer, which can recognize the HER2 epitope peptide with high affinity, and CDs act as coreactants of the anodic oxidation of the luminophore [Ru(bpy)3]2+. The HER2 biomarker is detected by changes in the ECL signal of the [Ru(bpy)3]2+/CD system, with a low detection limit of 1.84 fg/mL and a wide linear range. The proposed method has been successfully applied to detect the HER2 biomarker in human serum samples.
Collapse
Affiliation(s)
- Laura Gutiérrez-Gálvez
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | - Cristina Gutiérrez-Sánchez
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Daniel García-Nieto
- Instituto de Micro y Nanotecnología IMN-CNM, CSIC (CEI UAM+CSIC), Isaac Newton 8, Tres Cantos, 28760 Madrid, Spain
| | - Mónica Luna
- Instituto de Micro y Nanotecnología IMN-CNM, CSIC (CEI UAM+CSIC), Isaac Newton 8, Tres Cantos, 28760 Madrid, Spain
| | - Emilio M. Pérez
- IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| | - Tania García-Mendiola
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Encarnación Lorenzo
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|