1
|
Ma J, Majmudar A, Tian B. Bridging the Gap-Thermofluidic Designs for Precision Bioelectronics. Adv Healthc Mater 2024; 13:e2302431. [PMID: 37975642 DOI: 10.1002/adhm.202302431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/22/2023] [Indexed: 11/19/2023]
Abstract
Bioelectronics, the merging of biology and electronics, can monitor and modulate biological behaviors across length and time scales with unprecedented capability. Current bioelectronics research largely focuses on devices' mechanical properties and electronic designs. However, the thermofluidic control is often overlooked, which is noteworthy given the discipline's importance in almost all bioelectronics processes. It is believed that integrating thermofluidic designs into bioelectronics is essential to align device precision with the complexity of biofluids and biological structures. This perspective serves as a mini roadmap for researchers in both fields to introduce key principles, applications, and challenges in both bioelectronics and thermofluids domains. Important interdisciplinary opportunities for the development of future healthcare devices and precise bioelectronics will also be discussed.
Collapse
Affiliation(s)
- Jingcheng Ma
- The James Franck Institute, University of Chicago, Chicago, IL, 60637, USA
| | - Aman Majmudar
- The College, University of Chicago, Chicago, IL, 60637, USA
| | - Bozhi Tian
- The James Franck Institute, University of Chicago, Chicago, IL, 60637, USA
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA
- The Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
2
|
Welch LG, Estranero J, Tourlomousis P, Wootton RCR, Radu V, González-Fernández C, Puchtler TJ, Murzeau CM, Dieckmann NMG, Shibahara A, Longbottom BW, Bryant CE, Talbot EL. A programmable and automated optical electrowetting-on-dielectric (oEWOD) driven platform for massively parallel and sequential processing of single cell assay operations. LAB ON A CHIP 2024; 24:3763-3774. [PMID: 39037291 DOI: 10.1039/d4lc00245h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Recently, there has been an increasing emphasis on single cell profiling for high-throughput screening workflows in drug discovery and life sciences research. However, the biology underpinning these screens is often complex and is insufficiently addressed by singleplex assay screens. Traditional single cell screening technologies have created powerful sets of 'omic data that allow users to bioinformatically infer biological function, but have as of yet not empowered direct functional analysis at the level of each individual cell. Consequently, screening campaigns often require multiple secondary screens leading to laborious, time-consuming and expensive workflows in which attrition points may not be queried until late in the process. We describe a platform that harnesses droplet microfluidics and optical electrowetting-on-dielectric (oEWOD) to perform highly-controlled sequential and multiplexed single cell assays in massively parallelised workflows to enable complex cell profiling during screening. Soluble reagents or objects, such as cells or assay beads, are encapsulated into droplets of media in fluorous oil and are actively filtered based on size and optical features ensuring only desirable droplets (e.g. single cell droplets) are retained for analysis, thereby overcoming the Poisson probability distribution. Droplets are stored in an array on a temperature-controlled chip and the history of individual droplets is logged from the point of filter until completion of the workflow. On chip, droplets are subject to an automated and flexible suite of operations including the merging of sample droplets and the fluorescent acquisition of assay readouts to enable complex sequential assay workflows. To demonstrate the broad utility of the platform, we present examples of single-cell functional workflows for various applications such as antibody discovery, infectious disease, and cell and gene therapy.
Collapse
Affiliation(s)
- Lawrence G Welch
- Lightcast Discovery Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge, CB3 0FA, UK.
| | - Jasper Estranero
- Lightcast Discovery Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge, CB3 0FA, UK.
| | | | - Robert C R Wootton
- Lightcast Discovery Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge, CB3 0FA, UK.
| | - Valentin Radu
- Lightcast Discovery Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge, CB3 0FA, UK.
| | | | - Tim J Puchtler
- Lightcast Discovery Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge, CB3 0FA, UK.
| | - Claire M Murzeau
- Lightcast Discovery Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge, CB3 0FA, UK.
| | - Nele M G Dieckmann
- Lightcast Discovery Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge, CB3 0FA, UK.
| | - Aya Shibahara
- Lightcast Discovery Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge, CB3 0FA, UK.
| | - Brooke W Longbottom
- Lightcast Discovery Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge, CB3 0FA, UK.
| | - Clare E Bryant
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Emma L Talbot
- Lightcast Discovery Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge, CB3 0FA, UK.
| |
Collapse
|
3
|
Cheng G, Kuan CY, Lou KW, Ho YP. Light-Responsive Materials in Droplet Manipulation for Biochemical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2313935. [PMID: 38379512 DOI: 10.1002/adma.202313935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/31/2024] [Indexed: 02/22/2024]
Abstract
Miniaturized droplets, characterized by well-controlled microenvironments and capability for parallel processing, have significantly advanced the studies on enzymatic evolution, molecular diagnostics, and single-cell analysis. However, manipulation of small-sized droplets, including moving, merging, and trapping of the targeted droplets for complex biochemical assays and subsequent analysis, is not trivial and remains technically demanding. Among various techniques, light-driven methods stand out as a promising candidate for droplet manipulation in a facile and flexible manner, given the features of contactless interaction, high spatiotemporal resolution, and biocompatibility. This review therefore compiles an in-depth discussion of the governing mechanisms underpinning light-driven droplet manipulation. Besides, light-responsive materials, representing the core of light-matter interaction and the key character converting light into different forms of energy, are particularly assessed in this review. Recent advancements in light-responsive materials and the most notable applications are comprehensively archived and evaluated. Continuous innovations and rational engineering of light-responsive materials are expected to propel the development of light-driven droplet manipulation, equip droplets with enhanced functionality, and broaden the applications of droplets for biochemical studies and routine biochemical investigations.
Collapse
Affiliation(s)
- Guangyao Cheng
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Chit Yau Kuan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Kuan Wen Lou
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yi-Ping Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, 999077, China
- Centre for Novel Biomaterials, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
- The Ministry of Education Key Laboratory of Regeneration Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| |
Collapse
|
4
|
Wu J, Fang D, Zhou Y, Gao G, Zeng J, Zeng Y, Zheng H. Multifunctional droplet handling on surface-charge-graphic-decorated porous papers. LAB ON A CHIP 2024; 24:594-603. [PMID: 38175166 DOI: 10.1039/d3lc00806a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Developing a fluidic platform that combines high-throughput with reconfigurability is essential for a wide range of cutting-edge applications, but achieving both capabilities simultaneously remains a significant challenge. Herein, we propose a novel and unique method for droplet manipulation via drawing surface charge graphics on electrode-free papers in a contactless way. We find that opposite charge graphics can be written and retained on the surface layer of porous insulating paper by a controlled charge depositing method. The retained charge graphics result in high-resolution patterning of electrostatic potential wells (EPWs) on the hydrophobic porous surface, allowing for digital and high-throughput droplet handling. Since the charge graphics can be written/projected dynamically and simultaneously in large areas, allowing for on-demand and real-time reconfiguration of EPWs, we are able to develop a charge-graphic fluidic platform with both high reconfigurability and high throughput. The advantages and application potential of the platform have been demonstrated in chemical detection and dynamically controllable fluidic networks.
Collapse
Affiliation(s)
- Jiayao Wu
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China.
| | - Duokui Fang
- Key Laboratory of Transients in Hydraulic Machinery, Ministry of Education, Wuhan University, Wuhan 430072, China
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Yifan Zhou
- Key Laboratory of Transients in Hydraulic Machinery, Ministry of Education, Wuhan University, Wuhan 430072, China
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Ge Gao
- Key Laboratory of Transients in Hydraulic Machinery, Ministry of Education, Wuhan University, Wuhan 430072, China
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Ji Zeng
- Key Laboratory of Transients in Hydraulic Machinery, Ministry of Education, Wuhan University, Wuhan 430072, China
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Yubin Zeng
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Huai Zheng
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China.
- Key Laboratory of Transients in Hydraulic Machinery, Ministry of Education, Wuhan University, Wuhan 430072, China
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| |
Collapse
|
5
|
Islam MA, Park SY. Optimizing Optical Dielectrophoretic (ODEP) Performance: Position- and Size-Dependent Droplet Manipulation in an Open-Chamber Oil Medium. MICROMACHINES 2024; 15:119. [PMID: 38258238 PMCID: PMC10818536 DOI: 10.3390/mi15010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
An optimization study is presented to enhance optical dielectrophoretic (ODEP) performance for effective manipulation of an oil-immersed droplet in the floating electrode optoelectronic tweezers (FEOET) device. This study focuses on understanding how the droplet's position and size, relative to light illumination, affect the maximum ODEP force. Numerical simulations identified the characteristic length (Lc) of the electric field as a pivotal factor, representing the location of peak field strength. Utilizing 3D finite element simulations, the ODEP force is calculated through the Maxwell stress tensor by integrating the electric field strength over the droplet's surface and then analyzed as a function of the droplet's position and size normalized to Lc. Our findings reveal that the optimal position is xopt= Lc+ r, (with r being the droplet radius), while the optimal droplet size is ropt = 5Lc, maximizing light-induced field perturbation around the droplet. Experimental validations involving the tracking of droplet dynamics corroborated these findings. Especially, a droplet sized at r = 5Lc demonstrated the greatest optical actuation by performing the longest travel distance of 13.5 mm with its highest moving speed of 6.15 mm/s, when it was initially positioned at x0= Lc+ r = 6Lc from the light's center. These results align well with our simulations, confirming the criticality of both the position (xopt) and size (ropt) for maximizing ODEP force. This study not only provides a deeper understanding of the position- and size-dependent parameters for effective droplet manipulation in FEOET systems, but also advances the development of low-cost, disposable, lab-on-a-chip (LOC) devices for multiplexed biological and biochemical analyses.
Collapse
Affiliation(s)
| | - Sung-Yong Park
- Department of Mechanical Engineering, San Diego State University, San Diego, CA 92182-1323, USA
| |
Collapse
|
6
|
Gao S, Rui X, Zeng X, Zhou J. EWOD Chip with Micro-Barrier Electrode for Simultaneous Enhanced Mixing during Transportation. SENSORS (BASEL, SWITZERLAND) 2023; 23:7102. [PMID: 37631640 PMCID: PMC10459807 DOI: 10.3390/s23167102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Digital microfluidic platforms have been extensively studied in biology. However, achieving efficient mixing of macromolecules in microscale, low Reynolds number fluids remains a major challenge. To address this challenge, this study presents a novel design solution based on dielectric electro-wetting (EWOD) by optimizing the geometry of the transport electrode. The new design integrates micro-barriers on the electrodes to generate vortex currents that promote mixing during droplet transport. This design solution requires only two activation signals, minimizing the number of pins required. The mixing performance of the new design was evaluated by analyzing the degree of mixing inside the droplet and quantifying the motion of the internal particles. In addition, the rapid mixing capability of the new platform was demonstrated by successfully mixing the sorbitol solution with the detection solution and detecting the resulting reaction products. The experimental results show that the transfer electrode with a micro-barrier enables rapid mixing of liquids with a six-fold increase in mixing efficiency, making it ideal for the development of EWOD devices.
Collapse
Affiliation(s)
- Shang Gao
- School of Microelectronics, Fudan University, Shanghai 200433, China; (S.G.); (X.R.)
| | - Xichuan Rui
- School of Microelectronics, Fudan University, Shanghai 200433, China; (S.G.); (X.R.)
- Department of Micro/Nano Electronics State Key Laboratory of Radio Frequency Heterogeneous Integration, Shanghai Jiao Tong University, Shanghai 200433, China
| | - Xiangyu Zeng
- School of Microelectronics, Fudan University, Shanghai 200433, China; (S.G.); (X.R.)
| | - Jia Zhou
- School of Microelectronics, Fudan University, Shanghai 200433, China; (S.G.); (X.R.)
| |
Collapse
|
7
|
Lee Y, Lee CH, Park SY. An arrayed optofluidic system for three-dimensional (3D) focal control via electrowetting. OPTICS EXPRESS 2023; 31:17677-17694. [PMID: 37381495 DOI: 10.1364/oe.489508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/22/2023] [Indexed: 06/30/2023]
Abstract
A new lens capability for three-dimensional (3D) focal control is presented using an optofluidic system consisting of n × n arrayed liquid prisms. Each prism module contains two immiscible liquids in a rectangular cuvette. Using the electrowetting effect, the shape of the fluidic interface can be rapidly adjusted to create its straight profile with the prism's apex angle. Consequently, an incoming ray is steered at the tilted interface due to the refractive index difference between two liquids. To achieve 3D focal control, individual prisms in the arrayed system are simultaneously modulated, allowing incoming light rays to be spatially manipulated and converged on a focal point located at Pfocal (fx, fy, fz) in 3D space. Analytical studies were conducted to precisely predict the prism operation required for 3D focal control. Using three liquid prisms positioned on the x-, y-, and 45°-diagonal axes, we experimentally demonstrated 3D focal tunability of the arrayed optofluidic system, achieving focal tuning along lateral, longitudinal, and axial directions as wide as 0 ≤ fx ≤ 30 mm, 0 ≤ fy ≤ 30 mm, and 500 mm ≤ fz ≤ ∞. This focal tunability of the arrayed system allows for 3D control of the lens's focusing power, which could not be attained by solid-type optics without the use of bulky and complex mechanical moving components. This innovative lens capability for 3D focal control has potential applications in eye-movement tracking for smart displays, autofocusing of smartphone cameras, or solar tracking for smart photovoltaic systems.
Collapse
|