1
|
Yao C, Zhang GQ, Yu L, Li YL, Yang T, Yang JM, Yang YH, Hu R. Homogeneous electrochemical ratiometric biosensor for MircoRNA detection based on UiO-66-NH 2 signal probe and waste-free entropy-driven DNA machine. Talanta 2024; 274:125999. [PMID: 38583327 DOI: 10.1016/j.talanta.2024.125999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
The construction of efficient methods for highly sensitive and rapid detection of disease markers is essential for the early diagnosis of serious diseases. In this paper, taking advantage of the UiO-66-NH2 signal molecule in combination with a waste-free entropy-driven DNA machine, a novel homogeneous electrochemical ratiometric platform is developed to detect MircoRNA (miRNA). Metal-organic framework materials (UiO-66-NH2 MOF) and ferrocene were utilized as electrochemical signal tags and reference probes, respectively. The target-initiated waste-free three-dimensional (3D) entropy-driven DNA nanomachine is activated in the presence of miRNA, resulting in DNA-labeled-UiO-66-NH2 falling off from the electrode, leading to a decrease in the signal of UiO-66-NH2 at 0.83V. Our strategy can mitigate false positive responses induced by the DNA probes immobilized on electrodes in traditional distance-dependent signal adjustment ratiometric strategies. The proposed ratiometric platform demonstrates superior sensitivity (a detection limit of 9.8 fM), simplified operation, high selectivity, and high repeatability. The ratiometric biosensor is also applied to detect miRNA content in spiked serum samples.
Collapse
Affiliation(s)
- Chao Yao
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, PR China
| | - Gui-Qun Zhang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, PR China
| | - Lan Yu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, PR China
| | - Yu-Long Li
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, PR China
| | - Tong Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, PR China
| | - Jian-Mei Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, PR China
| | - Yun-Hui Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, PR China
| | - Rong Hu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, PR China; Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theronastics, Hunan University, Changsha, 410082, PR China.
| |
Collapse
|
2
|
Xia R, Chai H, Jiao J, Miao P. Assembly of DNA triangular pyramid frustum for ultrasensitive quantification of exosomal miRNA. Biosens Bioelectron 2023; 231:115297. [PMID: 37031505 DOI: 10.1016/j.bios.2023.115297] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/14/2023] [Accepted: 04/03/2023] [Indexed: 04/11/2023]
Abstract
Early screening of biomarkers benefits therapy and prognosis of cancers. MiRNAs encapsulated in tumor-derived exosomes are emerging biomarkers for early diagnosis of cancers. Nevertheless, traditional methods suffer certain drawbacks, which hamper their wide applications. In this contribution, we have developed a convenient electrochemical approach for quantification of exosomal miRNA based on the assembly of DNA triangular pyramid frustum (TPF) and strand displacement amplification. Four single-stranded DNA helps the formation of primary DNA triangle with three thiols for gold electrode immobilization at the bottom and three amino groups on overhangs for the capture of silver nanoparticles. On the other hand, target miRNA induced strand displacement reaction produces abundant specific DNA strands, which help the DNA structural transition from triangle to TPF. Amino groups are thus hidden and the declined silver stripping current can be used for the evaluation of target miRNA concentration. This biosensor exhibits excellent analytical performances and successfully achieves analysis of exosomal miRNAs from cells and clinical serum samples.
Collapse
Affiliation(s)
- Renpeng Xia
- University of Science and Technology of China, Hefei, 230026, PR China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, PR China
| | - Hua Chai
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, PR China
| | - Jin Jiao
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, PR China.
| | - Peng Miao
- University of Science and Technology of China, Hefei, 230026, PR China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, PR China.
| |
Collapse
|