1
|
Judan Cruz KG, Takumi O, Bongulto KA, Gandalera EE, Kagia N, Watanabe K. Natural compound-induced downregulation of antimicrobial resistance and biofilm-linked genes in wastewater Aeromonas species. Front Cell Infect Microbiol 2024; 14:1456700. [PMID: 39469451 PMCID: PMC11513397 DOI: 10.3389/fcimb.2024.1456700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/18/2024] [Indexed: 10/30/2024] Open
Abstract
Addressing the global antimicrobial resistance (AMR) crisis requires a multifaceted innovative approach to mitigate impacts on public health, healthcare and economic systems. In the complex evolution of AMR, biofilms and the acquisition of antimicrobial resistance genes (ARGs) play a pivotal role. Aeromonas is a major AMR player that often forms biofilm, harbors ARGs and is frequently detected in wastewater. Existing wastewater treatment plants (WWTPs) do not have the capacity to totally eliminate antimicrobial-resistant bacteria favoring the evolution of ARGs in wastewater. Besides facilitating the emergence of AMR, biofilms contribute significantly to biofouling process within the activated sludge of WWTP bioreactors. This paper presents the inhibition of biofilm formation, the expression of biofilm-linked genes and ARGs by phytochemicals andrographolide, docosanol, lanosterol, quercetin, rutin and thymohydroquinone. Aeromonas species were isolated and purified from activated sludge samples. The ARGs were detected in the isolated Aeromonas species through PCR. Aeromonas biofilms were quantified following the application of biocompounds through the microtiter plate assay. qPCR analyses of related genes were done for confirmation. Findings showed that the natural compounds inhibited the formation of biofilms and reduced the expression of genes linked to biofilm production as well as ARGs in wastewater Aeromonas. This indicates the efficacy of these compounds in targeting and controlling both ARGs and biofilm formation, highlighting their potential as innovative solutions for combating antimicrobial resistance and biofouling.
Collapse
Affiliation(s)
- Khristina G. Judan Cruz
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
- Department of Biological Sciences, College of Science, Central Luzon State University, Science City of Muñoz, Nueva Ecija, Philippines
| | - Okamoto Takumi
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
| | - Kenneth A. Bongulto
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
| | - Emmanuel E. Gandalera
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
- Department of Biological Sciences, College of Science, Central Luzon State University, Science City of Muñoz, Nueva Ecija, Philippines
| | - Ngure Kagia
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
| | - Kozo Watanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
| |
Collapse
|
2
|
Naik GARR, Roy AA, Mutalik S, Dhas N. Unleashing the power of polymeric nanoparticles - Creative triumph against antibiotic resistance: A review. Int J Biol Macromol 2024; 278:134977. [PMID: 39187099 DOI: 10.1016/j.ijbiomac.2024.134977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024]
Abstract
Antibiotic resistance (ABR) poses a universal concern owing to the widespread use of antibiotics in various sectors. Nanotechnology emerges as a promising solution to combat ABR, offering targeted drug delivery, enhanced bioavailability, reduced toxicity, and stability. This comprehensive review explores concepts of antibiotic resistance, its mechanisms, and multifaceted approaches to combat ABR. The review provides an in-depth exploration of polymeric nanoparticles as advanced drug delivery systems, focusing on strategies for targeting microbial infections and contributing to the fight against ABR. Nanoparticles revolutionize antimicrobial approaches, emphasizing passive and active targeting. The role of various molecules, including small molecules, antimicrobial peptides, proteins, carbohydrates, and stimuli-responsive systems, is being explored in recent research works. The complex comprehension mechanisms of ABR and strategic use of nanotechnology present a promising avenue for advancing antimicrobial tactics, ensuring treatment efficacy, minimizing toxic effects, and mitigating development of ABR. Polymeric nanoparticles, derived from natural or synthetic polymers, are crucial in overcoming ABR. Natural polymers like chitosan and alginate exhibit inherent antibacterial properties, while synthetic polymers such as polylactic acid (PLA), polyethylene glycol (PEG), and polycaprolactone (PCL) can be engineered for specific antibacterial effects. This comprehensive study provides a valuable source of information for researchers, healthcare professionals, and policymakers engaged in the urgent quest to overcome ABR.
Collapse
Affiliation(s)
- Gaurisha Alias Resha Ramnath Naik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Udupi, Karnataka State 576104, India
| | - Amrita Arup Roy
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Udupi, Karnataka State 576104, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Udupi, Karnataka State 576104, India
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Udupi, Karnataka State 576104, India.
| |
Collapse
|
3
|
Richardson JD, Van Lehn RC. Free Energy Analysis of Peptide-Induced Pore Formation in Lipid Membranes by Bridging Atomistic and Coarse-Grained Simulations. J Phys Chem B 2024; 128:8737-8752. [PMID: 39207202 DOI: 10.1021/acs.jpcb.4c03276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Antimicrobial peptides (AMPs) are attractive materials for combating the antimicrobial resistance crisis because they can kill target microbes by directly disrupting cell membranes. Although thousands of AMPs have been discovered, their molecular mechanisms of action are still poorly understood. One broad mechanism for membrane disruption is the formation of membrane-spanning hydrophilic pores which can be stabilized by AMPs. In this study, we use molecular dynamics simulations to investigate the thermodynamics of pore formation in model single-component lipid membranes in the presence of one of three AMPs: aurein 1.2, melittin and magainin 2. To overcome the general challenge of modeling long time scale membrane-related behaviors, including AMP binding, clustering, and pore formation, we develop a generalizable methodology for sampling AMP-induced pore formation. This approach involves the long equilibration of peptides around a pore created with a nucleation collective variable by performing coarse-grained simulations, then backmapping equilibrated AMP-membrane configurations to all-atom resolution. We then perform all-atom simulations to resolve free energy profiles for pore formation while accurately modeling the interplay of lipid-peptide-solvent interactions that dictate pore formation free energies. Using this approach, we quantify free energy barriers for pore formation without direct biases on peptides or whole lipids, allowing us to investigate mechanisms of pore formation for these 3 AMPs that are a consequence of unbiased peptide diffusion and clustering. Further analysis of simulation trajectories then relates variations in pore lining by AMPs, AMP-induced lipid disruptions, and salt bridges between AMPs to the observed pore formation free energies and corresponding mechanisms. This methodology and mechanistic analysis have the potential to generalize beyond the AMPs in this study to improve our understanding of pore formation by AMPs and related antimicrobial materials.
Collapse
Affiliation(s)
- Joshua D Richardson
- Department of Chemical and Biological Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Reid C Van Lehn
- Department of Chemical and Biological Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
4
|
Ibrahim AA, Mohammed RK. Bacteriological and molecular study of fosfomycin resistance in uropathogenic Escherichia coli. Braz J Microbiol 2024; 55:1091-1097. [PMID: 38367167 PMCID: PMC11153471 DOI: 10.1007/s42770-024-01272-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/07/2024] [Indexed: 02/19/2024] Open
Abstract
The identification of genes associated with resistance has the potential to facilitate the development of novel diagnostic tests and treatment methods. The objective of this study was to examine the antibiotic resistance and Fosfomycin resistance genes in uropathogenic Escherichia coli (UPEC) in patients in Baghdad, Iraq. After analyzing 250 urine samples using various identification methods, including the examination of morphological characteristics, biochemical tests, and genetic detection, it was determined that E. coli was the most common bacteria present, accounting for 63.6% of the samples. Antibiotic susceptibility testing showed a significant prevalence of resistance to various antibiotics, with 99.3% of E. coli isolates exhibiting multiple drug resistance (MDR). Fosfomycin showed antibacterial properties against UPEC. The minimum inhibitory concentration (MIC) ranged from 512 to 1024 μg/mL, while the minimum bactericidal concentration (MBC) was 2048 μg/mL. In the time-kill assay, fosfomycin was effective against fosfomycin-resistant isolates within 8-12 h. The genetic determinants associated with fosfomycin resistance were examined through the utilization of polymerase chain reaction (PCR). The findings indicated that the genes murA, glpT, and cyaA were detected in all the isolates when genomic DNA was used as a template. However, all the tests yielded negative results when plasmid was used as a template. The genes fosA3 and fosA4 were detected in 8.6% and 5% of the isolates when genomic DNA was used as a template. When plasmid was used as a template, the genes fosA3 and fosA4 were found in 5.7% and 2.9% of the isolates, respectively. In conclusion, there is an increasing problem with antibiotic resistance in UPEC, with elevated rates of resistance to several antibiotics. The study also offers novel insights into the genetic foundation of fosfomycin resistance in UPEC.
Collapse
Affiliation(s)
- Ali Attaallah Ibrahim
- Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq.
- Abi Ghraib General Hospital, Baghdad Al-Karkh Health Directorate, Iraqi Ministry of Health, Baghdad, Iraq.
| | - Rana Kadhim Mohammed
- Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
5
|
Attaallah Ibrahim A, Kadhim Mohammed R. Synergistic Antimicrobial Activity of Eugenol in Combination with Fosfomycin to Combat Escherichia coli and Potential Effect on Plasmid-Mediated Fosfomycin Resistance Genes. Chem Biodivers 2023; 20:e202301567. [PMID: 37956152 DOI: 10.1002/cbdv.202301567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/15/2023]
Abstract
The presence of multidrug-resistant pathogenic microorganisms makes it challenging to cure bacterial illnesses. Syzygium aromaticum has been used for medicinal purposes since ancient times. The objective of this study was to investigate the potential synergistic effect of the combination of Eugenol and Fosfomycin against clinically Uropathogenic Escherichia coli (UPEC) and their possible co-treatment as well as their contribution to plasmid-mediated Fosfomycin resistance (fosA3 and fosA4) genes using molecular assays. Eugenol was extracted from clove (Syzygium aromaticum) plants using steam distillation by Clevenger and analyzed by high-performance liquid chromatography (HPLC). UPEC accounted for 63.6 % of all isolates. Specifically, 99.3 % of the UPEC isolates exhibited resistance to multiple types of antibiotics [multidrug-resistant (MDR)]. The MIC for Eugenol was 1.25-5 μg/mL, and Fosfomycin was 512-1024 μg/mL, while the MBC for Eugenol was 5-10 μg/mL and Fosfomycin was 2048 μg/mL. The synergistic effects were considerable, with 1/4 MIC of Eugenol resulting in 1/8 MIC Fosfomycin. Eugenol inhibited most of the UPEC isolates at 4-8 hours, Fosfomycin at 8-12 hours, and co-treatment at 4-8 hours. The fosA3 and fosA4 genes were detected in 5.7 % and 2.9 % of the isolates, respectively. The results showed variable gene expression changes in response to the different treatments.
Collapse
Affiliation(s)
- Ali Attaallah Ibrahim
- Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq
- Abi Ghraib General Hospital, Baghdad Al-Karkh Health Directorate, Iraqi Ministry of Health, Baghdad, Iraq
| | - Rana Kadhim Mohammed
- Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
6
|
Ramunaidu A, Pavankumar P, Ragi N, Ramesh R, Jagannatham MV, Sripadi P. Characterization of isomeric acetyl amino acids and di-acetyl amino acids by LC/MS/MS. JOURNAL OF MASS SPECTROMETRY : JMS 2023; 58:e4982. [PMID: 38031236 DOI: 10.1002/jms.4982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/20/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023]
Abstract
Acetylation of amino acids is important in the molecular biology and biochemistry because they are part of several metabolic pathways. N-acetyl amino acids can form through degradation of N-acetyl proteins or direct acetylation of amino acids by specific enzymes. Acetylation of α-amino acids can be either on the alpha -NH2 or on the side-chain functional group, where both the acetyl products are isomeric and can show different biological roles. Theoretically, all proteinogenic α-amino acids are expected to undergo acetylation and they can be a part of metabolome. Thus, it is essential to detect and identify all the possible acetylated products of α-amino acids for untargeted metabolomics studies. In this study, it is aimed to synthesize and characterize all acetylated products of natural α-amino acids. A total of 20 Nα -acetyl amino acids (1-20), six side-chain acetyl amino acids (21-26), and six diacetyl amino acids (27-32) were synthesized and characterized by liquid chromatography-electrospray ionizationtandem mass spectrometry (LC-ESI-MS/MS). The [M + H]+ ions of all the acetyl amino acids were subjected to MS/MS experiments to obtain their structural information. Apart from the expected loss of (H2 O + CO) (immonium ions), most of the acetyl amino acids specifically showed loss of H2 O and loss of a ketene (C2 H2 O) from [M+H]+ ions. The side-chain acetyl amino acids showed a clear-cut structure specific fragment ions that enabled easy differentiation from their isomeric Nα -acetyl amino acids. The other isomeric/isobaric acetyl amino acids could also be easily distinguished by their MS/MS spectra. The MS/MS of immonium ions of the acetyl amino acids were also studied, and they included characteristic products reflecting the structures of parent Nα -acetyl and side-chain acetyl amino acids.
Collapse
Affiliation(s)
- Addipilli Ramunaidu
- Centre for Mass Spectrometry, Department of Analytical and Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pallerla Pavankumar
- Centre for Mass Spectrometry, Department of Analytical and Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Nagarjunachary Ragi
- Centre for Mass Spectrometry, Department of Analytical and Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Rodda Ramesh
- Centre for Mass Spectrometry, Department of Analytical and Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | | | - Prabhakar Sripadi
- Centre for Mass Spectrometry, Department of Analytical and Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
7
|
Zheng M, Lupoli TJ. Counteracting antibiotic resistance enzymes and efflux pumps. Curr Opin Microbiol 2023; 75:102334. [PMID: 37329679 DOI: 10.1016/j.mib.2023.102334] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/02/2023] [Accepted: 05/17/2023] [Indexed: 06/19/2023]
Abstract
Bacterial pathogens are constantly evolving new resistance mechanisms against antibiotics; hence, strategies to potentiate existing antibiotics or combat mechanisms of resistance using adjuvants are always in demand. Recently, inhibitors have been identified that counteract enzymatic modification of the drugs isoniazid and rifampin, which have implications in the study of multi-drug-resistant mycobacteria. A wealth of structural studies on efflux pumps from diverse bacteria has also fueled the design of new small-molecule and peptide-based agents to prevent the active transport of antibiotics. We envision that these findings will inspire microbiologists to apply existing adjuvants to clinically relevant resistant strains, or to use described platforms to discover novel antibiotic adjuvant scaffolds.
Collapse
Affiliation(s)
- Meng Zheng
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Tania J Lupoli
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA.
| |
Collapse
|
8
|
Magaña AJ, Sklenicka J, Pinilla C, Giulianotti M, Chapagain P, Santos R, Ramirez MS, Tolmasky ME. Restoring susceptibility to aminoglycosides: identifying small molecule inhibitors of enzymatic inactivation. RSC Med Chem 2023; 14:1591-1602. [PMID: 37731693 PMCID: PMC10507813 DOI: 10.1039/d3md00226h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/21/2023] [Indexed: 09/22/2023] Open
Abstract
Growing resistance to antimicrobial medicines is a critical health problem that must be urgently addressed. Adding to the increasing number of patients that succumb to infections, there are other consequences to the rise in resistance like the compromise of several medical procedures and dental work that are heavily dependent on infection prevention. Since their introduction in the clinics, aminoglycoside antibiotics have been a critical component of the armamentarium to treat infections. Still, the increase in resistance and their side effects led to a decline in their utilization. However, numerous current factors, like the urgent need for antimicrobials and their favorable properties, led to renewed interest in these drugs. While efforts to design new classes of aminoglycosides refractory to resistance mechanisms and with fewer toxic effects are starting to yield new promising molecules, extending the useful life of those already in use is essential. For this, numerous research projects are underway to counter resistance from different angles, like inhibition of expression or activity of resistance components. This review focuses on selected examples of one aspect of this quest, the design or identification of small molecule inhibitors of resistance caused by enzymatic modification of the aminoglycoside. These compounds could be developed as aminoglycoside adjuvants to overcome resistant infections.
Collapse
Affiliation(s)
- Angel J Magaña
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton Fullerton CA 92831 USA
| | - Jan Sklenicka
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton Fullerton CA 92831 USA
| | - Clemencia Pinilla
- Center for Translational Science, Florida International University Port St. Lucie FL 34987 USA
| | - Marc Giulianotti
- Center for Translational Science, Florida International University Port St. Lucie FL 34987 USA
| | - Prem Chapagain
- Department of Physics, Florida International University Miami FL 33199 USA
- Biomolecular Sciences Institute, Florida International University Miami FL 33199 USA
| | - Radleigh Santos
- Department of Mathematics, Nova Southeastern University Fort Lauderdale FL 33314 USA
| | - Maria Soledad Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton Fullerton CA 92831 USA
| | - Marcelo E Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton Fullerton CA 92831 USA
| |
Collapse
|