1
|
Yin C, Alam MZ, Fallon JT, Huang W. Advances in Development of Novel Therapeutic Strategies against Multi-Drug Resistant Pseudomonas aeruginosa. Antibiotics (Basel) 2024; 13:119. [PMID: 38391505 PMCID: PMC10885988 DOI: 10.3390/antibiotics13020119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) with multi-drug resistance (MDR) is a major cause of serious healthcare-associated infections, leading to high morbidity and mortality. This opportunistic pathogen is responsible for various infectious diseases, such as those seen in cystic fibrosis, ventilator-associated pneumonia, urinary tract infection, otitis externa, and burn and wound injuries. Due to its relatively large genome, P. aeruginosa has great diversity and can use various molecular mechanisms for antimicrobial resistance. For example, outer membrane permeability can contribute to antimicrobial resistance and is determined by lipopolysaccharide (LPS) and porin proteins. Recent findings on the regulatory interaction between peptidoglycan and LPS synthesis provide additional clues against pathogenic P. aeruginosa. This review focuses on recent advances in antimicrobial agents and inhibitors targeting LPS and porin proteins. In addition, we explore current and emerging treatment strategies for MDR P. aeruginosa, including phages, vaccines, nanoparticles, and their combinatorial therapies. Novel strategies and their corresponding therapeutic agents are urgently needed for combating MDR pathogens.
Collapse
Affiliation(s)
- Changhong Yin
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Md Zahidul Alam
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - John T Fallon
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Weihua Huang
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
2
|
Pei S, Lai L, Sun W, Lu Z, Hao J, Liu Y, Wu W, Guan S, Su X. Discovery of novel tetrahydrobenzothiophene derivatives as MSBA inhibitors for antimicrobial agents. Bioorg Chem 2024; 142:106932. [PMID: 37913586 DOI: 10.1016/j.bioorg.2023.106932] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023]
Abstract
The incidence of infections caused by drug-resistant bacteria has been one of the most serious health threats in the past and is substantially increasing in an alarming rate. Therefore, the development of new antimicrobial agents to combat bacterial resistance effectively is urgent. This study focused on the design and synthesis of 40 novel tetrahydrobenzothiophene amide/sulfonamide derivatives and their antibacterial activities were evaluated. Compounds 2p, 6p, and 6 s exhibited significant inhibitory effects on the growth of bacteria. To assess their safety, the cytotoxicity of the compounds was assessed using human normal liver cells, revealing that compound 6p has lower cytotoxicity. A mouse wound healing experiment demonstrated that compound 6p effectively improved wound infection induced by trauma and accelerated the healing process. Compound 6p holds promise as a potential therapeutic agent for combating bacterial infections.
Collapse
Affiliation(s)
- Shuchen Pei
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China.
| | - Lin Lai
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Wanlin Sun
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Zhaoyang Lu
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Jielei Hao
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Yuheng Liu
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, PR China; Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Wen Wu
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 404120, PR China.
| | - Shan Guan
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, PR China.
| | - Xiaoyan Su
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| |
Collapse
|
3
|
Pigareva VA, Paltsev OS, Marina VI, Lukianov DA, Moiseenko AV, Shchelkunov NM, Fedyanin AA, Sybachin AV. Ag 2O-Containing Biocidal Interpolyelectrolyte Complexes on Glass Surfaces-Adhesive Properties of the Coatings. Polymers (Basel) 2023; 15:4690. [PMID: 38139942 PMCID: PMC10747383 DOI: 10.3390/polym15244690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Biocidal coatings are of great interest to the healthcare system. In this work, the biocidal activity of coatings based on a complex biocide containing polymer and inorganic active antibacterial components was studied. Silver oxide was distributed in a matrix of a positively charged interpolyelectrolyte complex (IPEC) of polydiallyldimethylammonium chloride (PDADMAC) and sodium polystyrene sulfonate (PSS) using ultrasonic dispersion, forming nanoparticles with an average size of 5-6 nm. The formed nanoparticles in the matrix are not subject to agglomeration and changes in morphology during storage. It was found that the inclusion of silver oxide in a positively charged IPEC allows a more than 4-fold increase in the effectiveness of the complex biocide against E. coli K12 in comparison with the biocidal effect of PDADMAC and IPEC. Polycation, IPEC, and the IPEC/Ag2O ternary complex form coatings on the glass surface due to electrostatic adsorption. Adhesive and cohesive forces in the resulting coatings were studied with micron-scale coatings using dynamometry. It was found that the stability of the coating is determined primarily by adhesive interactions. At the macro level, it is not possible to reliably identify the role of IPEC formation in adhesion. On the other hand, use of the optical tweezers method makes it possible to analyze macromolecules at the submicron scale and to evaluate the multiple increase in adhesive forces when forming a coating from IPEC compared to coatings from PDADMAC. Thus, the application of ternary IPEC/Ag2O complexes makes it possible to obtain coatings with increased antibacterial action and improved adhesive characteristics.
Collapse
Affiliation(s)
- Vladislava A. Pigareva
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991 Moscow, Russia; (V.A.P.); (V.I.M.); (D.A.L.)
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| | - Oleg S. Paltsev
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991 Moscow, Russia; (V.A.P.); (V.I.M.); (D.A.L.)
| | - Valeria I. Marina
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991 Moscow, Russia; (V.A.P.); (V.I.M.); (D.A.L.)
- Skolkovo Institute of Science and Technology, Center for Molecular and Cellular Biology, Bolshoy Boulevard, 30, 121205 Moscow, Russia
| | - Dmitrii A. Lukianov
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991 Moscow, Russia; (V.A.P.); (V.I.M.); (D.A.L.)
- Skolkovo Institute of Science and Technology, Center for Molecular and Cellular Biology, Bolshoy Boulevard, 30, 121205 Moscow, Russia
| | - Andrei V. Moiseenko
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 1-5, 119991 Moscow, Russia;
| | - Nikita M. Shchelkunov
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, 1-2, 119991 Moscow, Russia; (N.M.S.); (A.A.F.)
| | - Andrey A. Fedyanin
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, 1-2, 119991 Moscow, Russia; (N.M.S.); (A.A.F.)
| | - Andrey V. Sybachin
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991 Moscow, Russia; (V.A.P.); (V.I.M.); (D.A.L.)
| |
Collapse
|