1
|
Tang F, BinWang, Li J, Xu J, Zeng J, Gao W, Chen K. Reactive template method for synthesis of water-soluble fluorescent silver nanoclusters supported on the surface of cellulose nanofibers. Carbohydr Polym 2025; 352:123166. [PMID: 39843071 DOI: 10.1016/j.carbpol.2024.123166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025]
Abstract
There is an emerging quest for fabrication of water-soluble fluorescent silver nanoclusters (AgNCs) with long-lasting fluorescent properties and dimensional stability while being sustainable and functional. Thus, a well-known seed-mediated growth strategy has been developed to manufacture AgNCs supported onto carboxyl and aldehyde modified cellulose nanofiber (DATCNF) with ultra-small and intense fluorescence. The DATCNF acts as a reductant, template, and stabilizer while the protective ligand, 2-Mercaptonicotinic Acid (2-H2MA), provides AgNCs with luminous characteristic and constrained size of 4.47 nm. The structural feature of 2-H2MA also governs the formation and stability of AgNCs, imparting them with hydrophobic nature and steady fluorescence emission in water. This aqueous colloidal suspension (DATCNF-AgNCs) is highly dispersed, photobleaching resistant, and hardly agglomerates. Even after two months of exposure to the sun, the fluorescence intensity had only fallen by 20 %. Furthermore, the aqueous colloidal suspension exhibits outstanding antibacterial property and UV shielding capability, making it suitable as an additive for the production of TCNF films with high UV blocking capacity and high tensile strength. This strategy opens the door to design and fabricate mechanically robust DATCNF-AgNCs composites for luminescent, antimicrobial, and UV protection applications.
Collapse
Affiliation(s)
- Feiyu Tang
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - BinWang
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Jinpeng Li
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Jun Xu
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jinsong Zeng
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wenhua Gao
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Kefu Chen
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
2
|
Yang L, Yuan QY, Lou CW, Li TT, Lin JH. Modified Nanocellulose Hydrogels and Applications in Sensing Fields. Gels 2025; 11:140. [PMID: 39996683 PMCID: PMC11855029 DOI: 10.3390/gels11020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/20/2025] [Accepted: 01/31/2025] [Indexed: 02/26/2025] Open
Abstract
Due to the intensification of global warming and the greenhouse effect, the exploration and research of sustainable sensors have become a research direction of people. Cellulose-based hydrogels, as a new kind of green material with strong plasticity, have become a popular material for sensor development. Due to the limited mechanical properties and poor compatibility of single-cellulose-based hydrogels, researchers have modified them to not only retain the original excellent properties of cellulose hydrogels, but also increase other properties, which has broadened the field of developing cellulose hydrogel sensors. From 2017 to 2020, cellulose-based hydrogel sensors were mainly used for biosensing applications, with a focus on the detection of biomolecules. Since then, researchers have increasingly turned their attention to pressure and strain sensors, especially those that are flexible and suitable for wearable devices. This paper introduces the modification of cellulose and cellulose-based hydrogels in detail, and lists the applications of modified cellulose-based hydrogels in different functional sensor directions, which provides different ideas for the application of modified cellulose-based hydrogels in the field of sensing, and proves that they have great potential in the field of sensing.
Collapse
Affiliation(s)
- Lan Yang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; (L.Y.); (Q.-Y.Y.); (C.-W.L.)
| | - Qian-Yu Yuan
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; (L.Y.); (Q.-Y.Y.); (C.-W.L.)
| | - Ching-Wen Lou
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; (L.Y.); (Q.-Y.Y.); (C.-W.L.)
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 413305, Taiwan
- Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou 350108, China
| | - Ting-Ting Li
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; (L.Y.); (Q.-Y.Y.); (C.-W.L.)
- Tianjin and Ministry of Education Key Laboratory for Advanced Textile Composite Materials, Tiangong University, Tianjin 300387, China
- Shaoxing Keqiao Institute, Tiangong University, Shaoxing 312030, China
| | - Jia-Horng Lin
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; (L.Y.); (Q.-Y.Y.); (C.-W.L.)
- Advanced Medical Care and Protection Technology Research Center, Department of Fiber and Composite Materials, Feng Chia University, Taichung City 407102, Taiwan
- Advanced Medical Care and Protection Technology Research Center, College of Textile and Clothing, Qingdao University, Qingdao 266071, China
| |
Collapse
|
3
|
Nguyen TD, Lee JS. Dynamic Bonds in Biopolymers: Enhancing Performance and Properties. Polymers (Basel) 2025; 17:457. [PMID: 40006119 DOI: 10.3390/polym17040457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
As the demand for polymer materials increases, conventional petroleum-based synthetic polymers face several significant challenges, including raw material depletion, environmental issues, and the potential for biotoxicity in biological applications. In response, bio-based polymers derived from natural sources, such as cellulose, alginate, chitosan, and gelatin, have garnered attention due to their advantages of biocompatibility and biodegradability. However, these polymers often suffer from poor physical stability due to the high density of hydrogen bonds and the large structure of pyranose rings. This review explores the potential of incorporating dynamic covalent bonds into biopolymers to overcome these limitations. The chemical structures of biopolymers contain numerous functional groups that can serve as anchoring sites for dynamic bonds, thereby enhancing the mechanical properties and overall stability of the polymer network. The review discusses the performance improvements achievable through dynamic covalent bonds and examines the future potential of this technology to enhance the physical properties of biopolymers and expand their applicability in biological fields.
Collapse
Affiliation(s)
- Trong Danh Nguyen
- Department of Materials Science and Engineering, Gachon University, 1342 Seongnam-Daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Jun Seop Lee
- Department of Materials Science and Engineering, Gachon University, 1342 Seongnam-Daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
4
|
Mei L, Ouyang W, Xu L, Huang Y, Liu Q, Bai Y, Lu Q, Luo T, Wu Z. Super Tough Multifunctional MXene/PAA-CS Double Network Hydrogels with High Mechanical Sensing Properties and Excellent EMI Shielding Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410687. [PMID: 39723729 DOI: 10.1002/smll.202410687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/07/2024] [Indexed: 12/28/2024]
Abstract
Hydrogels present significant potential in flexible materials designed for electromagnetic interference (EMI) shielding, attributed to their soft, stretchable mechanical properties and water-rich porous structures. Unfortunately, EMI shielding hydrogels commonly suffer from low mechanical properties, deficient fracture energy, and low strength, which limit the serviceability of these materials in complex mechanical environments. In this study, the double network strategy is successfully utilized along with the Hofmeister effect to create MXene/PAA (polyacrylic acid)-CS (chitosan) hydrogels and further strengthen and toughen the gel with (NH4)2SO4 solution. The gel exhibits enhanced functionalities such as outstanding stretchability, excellent strain sensitivity (11.66), and super fracture energy (≥9 kJ m-2). Notably, it demonstrates outstanding shielding effectiveness of 73.8 dB in the terahertz (THz) range, and the shielding properties can be effectively tuned by varying the MXene content, the (NH4)2SO4 concentration, and the thickness of the hydrogel. Additionally, the gel shows robust and superior shielding effectiveness after repeated stretching and long-term dehydration. The MXene/PAA-CS double-network (DN) hydrogels would be an excellent candidate for EMI shielding materials in advanced flexible electronic equipment and soft robots.
Collapse
Affiliation(s)
- Lin Mei
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230026, China
| | - Wenchong Ouyang
- Deep Space Exploration Laboratory, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
- Joint Laboratory of Plasma Application Technology, Institute of Advanced Technology, University of Science and Technology of China, Hefei, 230031, China
| | - Limin Xu
- Advanced Institute of Photonics Technology, School of Information Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yuanlong Huang
- Advanced Institute of Photonics Technology, School of Information Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qi Liu
- School of Engineering, Yunnan University, Kunming, 650091, China
| | - Yu Bai
- Experimental Center of Engineering and Materials Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Quanming Lu
- Deep Space Exploration Laboratory, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Tianzhi Luo
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230026, China
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230026, China
| | - Zhengwei Wu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026, China
- Joint Laboratory of Plasma Application Technology, Institute of Advanced Technology, University of Science and Technology of China, Hefei, 230031, China
| |
Collapse
|
5
|
Si M, Tang Y, Xu C, Li CY, Xia K, Xu W, Lin J, Jiang Z, Yang J, Zheng SY. Developing tough, fatigue-resistant and conductive hydrogels via in situ growth of metal dendrites. MATERIALS HORIZONS 2025. [PMID: 39866078 DOI: 10.1039/d4mh01778a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Developing hydrogels with high conductivity and toughness via a facile strategy is important yet challenging. Herein, we proposed a new strategy to develop conductive hydrogels by growing metal dendrites. Water-soluble Sn2+ ions were soaked into the gel and then converted to Sn dendrites via an electrochemical reaction; the excessive Sn2+ ions were finally removed by water dialysis, accompanied by dramatic shrinkage of the gel. Based on in situ transformation from metal ions to dendrites, the method integrated the advantages of ionic conductive fillers, such as LiCl (uniform dispersion), and electrical fillers, such as metal particles (high conductivity). Additionally, the morphology of metal dendrites combined advantages of 1D nanowires (large aspect ratio of the branches) and 2D nanosheets (large specific surface area of the skeleton). The strategy was found to be effective across diverse gel systems (non-ionic, anionic, cationic and zwitterionic). The dense, highly conductive and branched Sn dendrites not only formed a conductive pathway but also interacted with the polymer network to transfer stress and dissipate energy. The resultant gel exhibited a high conductivity of 12.5 S m-1, fracture energy of 1334.0 J m-2, and fatigue threshold of 720 J m-2. Additionally, the gel exhibited excellent sensitivity when used as a wearable strain sensor and bioelectrode. We believe this strategy offers new insights into the development of conductive hydrogels.
Collapse
Affiliation(s)
- Mengjie Si
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yueman Tang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Chen Xu
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Chen Yu Li
- Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou 311100, P. R. China.
| | - Kaishun Xia
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310009, P. R. China
| | - Wei Xu
- ZJU-Hangzhou Global Scientific Center, Zhejiang University, Hangzhou 311200, P. R. China
| | - Ji Lin
- School of Mechanical Engineering & Mechanics, Ningbo University, Ningbo 315211, P. R. China
| | - Zhen Jiang
- School of Mechanical Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Jintao Yang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Si Yu Zheng
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
6
|
Gao J, Li X, Xu L, Yan M, Wang Q. Dual design strategy for carboxymethyl cellulose-polyaniline composite hydrogels as super-sensitive amphibious sensors. Int J Biol Macromol 2024; 280:135630. [PMID: 39278445 DOI: 10.1016/j.ijbiomac.2024.135630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Conductive hydrogels as ideal candidate materials for flexible sensors have exhibited many promising applications. However, complex application environments, such as low temperatures or underwater conditions, have introduced new requirements for hydrogel sensors. Herein, a high-performance conductive hydrogel based on carboxymethyl cellulose-polyaniline (CMC-PANI) submicron spheres, poly (vinyl alcohol) (PVA) and phytic acid (PA) was designed and fabricated via a dual design strategy. CMC-PANI particles were introduced to not only empower the good electromechanical performance to the hydrogels, but also enhance the mechanical properties. The obtained hydrogel exhibited good mechanical property, anti-freezing, anti-swellable behavior and recyclable performance. Resistive-type strain sensors assembled by the prepared hydrogels exhibited high pressure sensitivity (34.17×10-2 kPa-1) and fast response time (100 ms), which can clearly detect the pulse beats. Moreover, the hydrogel sensors can achieve long-term stability, high sensitivity and fatigue resistance as an underwater sensor. Based on these favorable performances, the conductive polymer hydrogels may open up an enticing avenue for functional soft materials in health diagnostic and electronic components.
Collapse
Affiliation(s)
- Jianliang Gao
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Xiaomeng Li
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Lina Xu
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Manqing Yan
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Qiyang Wang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China.
| |
Collapse
|
7
|
Wang Z, Xu L, Liu W, Chen Y, Yang Q, Tang Z, Tan H, Li N, Du J, Yu M, Xu J. Tough, self-healing, adhesive double network conductive hydrogel based on gelatin-polyacrylamide covalently bridged by oxidized sodium alginate for durable wearable sensors. Int J Biol Macromol 2024; 276:133802. [PMID: 38992552 DOI: 10.1016/j.ijbiomac.2024.133802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 07/13/2024]
Abstract
Pursuing high-performance conductive hydrogels is still hot topic in development of advanced flexible wearable devices. Herein, a tough, self-healing, adhesive double network (DN) conductive hydrogel (named as OSA-(Gelatin/PAM)-Ca, O-(G/P)-Ca) was prepared by bridging gelatin and polyacrylamide network with functionalized polysaccharide (oxidized sodium alginate, OSA) through Schiff base reaction. Thanks to the presence of multiple interactions (Schiff base bond, hydrogen bond, and metal coordination) within the network, the prepared hydrogel showed outstanding mechanical properties (tensile strain of 2800 % and stress of 630 kPa), high conductivity (0.72 S/m), repeatable adhesion performance and excellent self-healing ability (83.6 %/79.0 % of the original tensile strain/stress after self-healing). Moreover, the hydrogel-based sensor exhibited high strain sensitivity (GF = 3.66) and fast response time (<0.5 s), which can be used to monitor a wide range of human physiological signals. Based on this, excellent compression sensitivity (GF = 0.41 kPa-1 in the range of 90-120 kPa), a three-dimensional (3D) array of flexible sensor was designed to monitor the intensity of pressure and spatial force distribution. In addition, a gel-based wearable sensor was accurately classified and recognized ten types of gestures, achieving an accuracy rate of >96.33 % both before and after self-healing under three machine learning models (the decision tree, SVM, and KNN). This paper provides a simple method to prepare tough and self-healing conductive hydrogel as flexible multifunctional sensor devices for versatile applications in fields such as healthcare monitoring, human-computer interaction, and artificial intelligence.
Collapse
Affiliation(s)
- Zengsheng Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Lijian Xu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, PR China.
| | - Weiling Liu
- School of Electrical and Information Engineering, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Yi Chen
- Ocean College, Zhejiang University, Zhoushan 316021, PR China
| | - Qiannian Yang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Zengmin Tang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Haihu Tan
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Na Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Jingjing Du
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Maolin Yu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, PR China.
| | - Jianxiong Xu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, PR China.
| |
Collapse
|
8
|
Tang H, Li Y, Liao S, Liu H, Qiao Y, Zhou J. Multifunctional Conductive Hydrogel Interface for Bioelectronic Recording and Stimulation. Adv Healthc Mater 2024; 13:e2400562. [PMID: 38773929 DOI: 10.1002/adhm.202400562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/11/2024] [Indexed: 05/24/2024]
Abstract
The past few decades have witnessed the rapid advancement and broad applications of flexible bioelectronics, in wearable and implantable electronics, brain-computer interfaces, neural science and technology, clinical diagnosis, treatment, etc. It is noteworthy that soft and elastic conductive hydrogels, owing to their multiple similarities with biological tissues in terms of mechanics, electronics, water-rich, and biological functions, have successfully bridged the gap between rigid electronics and soft biology. Multifunctional hydrogel bioelectronics, emerging as a new generation of promising material candidates, have authentically established highly compatible and reliable, high-quality bioelectronic interfaces, particularly in bioelectronic recording and stimulation. This review summarizes the material basis and design principles involved in constructing hydrogel bioelectronic interfaces, and systematically discusses the fundamental mechanism and unique advantages in bioelectrical interfacing with the biological surface. Furthermore, an overview of the state-of-the-art manufacturing strategies for hydrogel bioelectronic interfaces with enhanced biocompatibility and integration with the biological system is presented. This review finally exemplifies the unprecedented advancement and impetus toward bioelectronic recording and stimulation, especially in implantable and integrated hydrogel bioelectronic systems, and concludes with a perspective expectation for hydrogel bioelectronics in clinical and biomedical applications.
Collapse
Affiliation(s)
- Hao Tang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yuanfang Li
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Shufei Liao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Houfang Liu
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Yancong Qiao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jianhua Zhou
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
9
|
Zhang Y, Yuan Y, Yu H, Cai C, Sun J, Tian X. A stretchable conductive elastomer sensor with self-healing and highly linear strain for human movement detection and pressure response. MATERIALS HORIZONS 2024; 11:3911-3920. [PMID: 38836844 DOI: 10.1039/d4mh00448e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Expanding the detection information of wearable smart devices in applications has practical implications for their use in daily life and healthcare. Damage and breakage caused by mechanical injuries and continuous use are unavoidable for polymer matrices so self-healing properties are expected to be conferred on flexible sensors to extend their life and durability. In addition, a good linearity of relative resistance change vs. strain (gauge factor, GF) facilitates the streamlined conversion of electrical signals to 3D information of human motion, whereas existing works on sensors neglect the quantitative analysis of signals. This letter reports a self-healable flexible electronic sensor based on hydrogen bonding and electrostatic interaction between maleic acid-grafted natural rubber (MNR), polyaniline (PANI), and phytic acid (PA). MNR is the flexible matrix and the template for aniline (ANI) polymerization, and PA acts as the dopant and crosslinking agent. The MNR-PANI-PA sensor shows easy self-healing at room temperature, enhanced mechanical behaviour (∼2.5 MPa, 1000% strain), and excellent linearity (GF of 13.8 over 250% strain and GF of 32.0 over 250-100% strain). Due to the highly linear relationship between ΔR/R and bending angle, the electrical signals of human limb movement can output relevant information on bending angle and frequency. By constructing a sensing array, changes in the position and magnitude of applied pressure could also be detected in real-time. Based on these advantages, the MNR-PANI-PA composite sensor is expected to have potential applications in health monitoring, body motion detection, and electronic skins.
Collapse
Affiliation(s)
- Yao Zhang
- School of Materials Science and Engineering, Shanghai Key Laboratory of Advanced Polymeric Materials, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Yizhong Yuan
- School of Materials Science and Engineering, Shanghai Key Laboratory of Advanced Polymeric Materials, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Huimei Yu
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jinyu Sun
- School of Materials Science and Engineering, Shanghai Key Laboratory of Advanced Polymeric Materials, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Xiaohui Tian
- School of Materials Science and Engineering, Shanghai Key Laboratory of Advanced Polymeric Materials, East China University of Science and Technology, Shanghai 200237, P. R. China.
| |
Collapse
|
10
|
Li Z, Lu J, Ji T, Xue Y, Zhao L, Zhao K, Jia B, Wang B, Wang J, Zhang S, Jiang Z. Self-Healing Hydrogel Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306350. [PMID: 37987498 DOI: 10.1002/adma.202306350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/07/2023] [Indexed: 11/22/2023]
Abstract
Hydrogels have emerged as powerful building blocks to develop various soft bioelectronics because of their tissue-like mechanical properties, superior bio-compatibility, the ability to conduct both electrons and ions, and multiple stimuli-responsiveness. However, hydrogels are vulnerable to mechanical damage, which limits their usage in developing durable hydrogel-based bioelectronics. Self-healing hydrogels aim to endow bioelectronics with the property of repairing specific functions after mechanical failure, thus improving their durability, reliability, and longevity. This review discusses recent advances in self-healing hydrogels, from the self-healing mechanisms, material chemistry, and strategies for multiple properties improvement of hydrogel materials, to the design, fabrication, and applications of various hydrogel-based bioelectronics, including wearable physical and biochemical sensors, supercapacitors, flexible display devices, triboelectric nanogenerators (TENGs), implantable bioelectronics, etc. Furthermore, the persisting challenges hampering the development of self-healing hydrogel bioelectronics and their prospects are proposed. This review is expected to expedite the research and applications of self-healing hydrogels for various self-healing bioelectronics.
Collapse
Affiliation(s)
- Zhikang Li
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jijian Lu
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Tian Ji
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yumeng Xue
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an, 710072, China
| | - Libo Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Kang Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Boqing Jia
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Bin Wang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiaxiang Wang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shiming Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
11
|
Gao J, Li X, Xu L, Yan M, Bi H, Wang Q. Transparent multifunctional cellulose-based conductive hydrogel for wearable strain sensors and arrays. Carbohydr Polym 2024; 329:121784. [PMID: 38286530 DOI: 10.1016/j.carbpol.2024.121784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/31/2024]
Abstract
Conductive hydrogels as promising candidate materials for flexible strain sensors have gained considerable attentions. However, it is still a great challenge to construct hydrogel with multifunctional performance via natural polymer. Herein, a novel multifunctional conductive hydrogel based on methylcellulose and cellulose nanocrystal was prepared via a facile and low-cost strategy. Methylcellulose (MC) was introduced to not only guarantee the stability of tannic acid coated cellulose nanocrystal (TA@CNCs) in LiCl solution, but also improve anti-freezing ability. The obtained hydrogel exhibited high transparency (98 % at 800 nm), good stretchability (663.1 %), low temperature tolerance (-23.9 °C), superior conductivity (2.89 S/m) and excellent UV shielding behavior. Flexible strain sensor assembled by the prepared hydrogels can be used to detect human body motions include subtle and large motions, and exhibited good sensitivity and stability over a wide temperature range. Multiple flexible hydrogels can also be assembled into a 3D sensor array to detect the distribution and magnitude of spatial pressure. Therefore, the hydrogels prepared via natural polymers will have broad application prospects in wearable devices, electronic skin and multifunctional sensor components.
Collapse
Affiliation(s)
- Jianliang Gao
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Xiaomeng Li
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Lina Xu
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Manqing Yan
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Hong Bi
- School of Materials Science and Engineering, Anhui University, Hefei 230601, China
| | - Qiyang Wang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China.
| |
Collapse
|
12
|
Fu H, Wang B, Li J, Cao D, Zhang W, Xu J, Li J, Zeng J, Gao W, Chen K. Ultra-strong, nonfreezing, and flexible strain sensors enabled by biomass-based hydrogels through triple dynamic bond design. MATERIALS HORIZONS 2024; 11:1588-1596. [PMID: 38270542 DOI: 10.1039/d3mh02008h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Biomass-based hydrogels have displayed excellent potential in flexible strain sensors due to their adequacy, biocompatibility, nontoxic and degradability. Nevertheless, their inferior mechanical properties, particularly at cryogenic temperatures, impeded their extensive utilization. Herein, we reported a rationally designed strain sensor fabricated from a gelatin and cellulose-derived hydrogel with superior mechanical robustness, cryogenic endurance, and flexibility, owing to a triple dynamic bond strategy (TDBS), namely the synergistic reinforcement among potent hydrogen bonds, imine bonds, and sodium bonds. Beyond conventional sacrificing bonds consisting of hydrogen bonds, dynamic covalent bonds and coordinate bonds, synergetic triple dynamic bonds dominated by strong hydrogen bonds and assisted by imine and sodium bonds with higher strength can dissipate more mechanical energy endowing the hydrogel with 38-fold enhancement in tensile strength (6.4 MPa) and 39-fold improvement in toughness (2.9 MPa). We further demonstrated that this hydrogel can work as a robust and biodegradable strain sensor exhibiting remarkable flexibility, broad detection range, considerable sensitivity and excellent sensing stability. Furthermore, owing to the improved nonfreezing performance achieved from incorporating sodium salts, the sensor delivered outstanding sensing properties under subzero conditions such as -20 and -4 °C. It is anticipated that the TDBS can create diverse high-performance soft-electronics for broad applications in human-machine interfaces, energy and healthcare.
Collapse
Affiliation(s)
- Haocheng Fu
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Bin Wang
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Jinpeng Li
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Daxian Cao
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Wei Zhang
- Shandong Sun Holdings Group, No. 1 Youyi Road, Yanzhou District, Jining 272100, China.
| | - Jun Xu
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Jun Li
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Jinsong Zeng
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Wenhua Gao
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Kefu Chen
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| |
Collapse
|
13
|
Ruan S, Wang W, Qiu L, Yan X, Peng Z, Zhu H, Liu Y, Lu Y, You R. Preparation of 3D flexible SERS substrates by mixing gold nanorods in hydrogels for the detection of malachite green and crystal violet. Mikrochim Acta 2024; 191:205. [PMID: 38492087 DOI: 10.1007/s00604-024-06284-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/23/2024] [Indexed: 03/18/2024]
Abstract
A simple and cost-effective fabrication method of gold nanorods (AuNRs) nanoparticles hybridized with polyvinyl alcohol hydrogel (AuNR/PVA) for SERS substrate is described. The AuNR/PVA achieves the control of inter-particle nanogap by modulating the density of gold nanorods, and inter-particle nanogap by the spatial deformation of the hydrogel, and the reduction of the gap between the AuNRs deposited on hydrogel makes the SERS enhancement. In addition, the AuNR/PVA substrate maintains high SERS activity after more than 100 cycles of bending and storage in air for 30 days, and the substrate possesses high sensitivity and high reproducibility. Combining a flexible and transparent surface-enhanced Raman spectroscopy (SERS) substrate for in situ detection with a small portable Raman can be applied to scenarios such as environmental detection and hazardous materials detection. The substrate showed excellent SERS activity against malachite green (MG) and crystal violet (CV) with limits of detection of 1.18 × 10-13 M and 7.17 × 10-12 M, respectively. The usability of the proposed SERS substrate was demonstrated by detecting the above contaminants in aquatic water. This work not only utilizes a cost-effective method for mass production but also provides a reliable and convenient platform for the preparation of other noble metal flexible substrates.
Collapse
Affiliation(s)
- Shuyan Ruan
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, 350007, Fujian, China
| | - Wenxi Wang
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, 350007, Fujian, China
| | - Liting Qiu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, 350007, Fujian, China
| | - Xin Yan
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, 350007, Fujian, China
| | - Zhihua Peng
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, 350007, Fujian, China
| | - Huina Zhu
- Integrated Technique Services Center of Dong Shan Customs, Zhangzhou, 363401, Fujian, China
| | - Yunzhen Liu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, 350007, Fujian, China.
| | - Yudong Lu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, 350007, Fujian, China
| | - Ruiyun You
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, 350007, Fujian, China.
| |
Collapse
|
14
|
Yang H, Ding S, Wang J, Sun S, Swaminathan R, Ng SWL, Pan X, Ho GW. Computational design of ultra-robust strain sensors for soft robot perception and autonomy. Nat Commun 2024; 15:1636. [PMID: 38388467 PMCID: PMC10883982 DOI: 10.1038/s41467-024-45786-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
Compliant strain sensors are crucial for soft robots' perception and autonomy. However, their deformable bodies and dynamic actuation pose challenges in predictive sensor manufacturing and long-term robustness. This necessitates accurate sensor modelling and well-controlled sensor structural changes under strain. Here, we present a computational sensor design featuring a programmed crack array within micro-crumples strategy. By controlling the user-defined structure, the sensing performance becomes highly tunable and can be accurately modelled by physical models. Moreover, they maintain robust responsiveness under various demanding conditions including noise interruptions (50% strain), intermittent cyclic loadings (100,000 cycles), and dynamic frequencies (0-23 Hz), satisfying soft robots of diverse scaling from macro to micro. Finally, machine intelligence is applied to a sensor-integrated origami robot, enabling robotic trajectory prediction (<4% error) and topographical altitude awareness (<10% error). This strategy holds promise for advancing soft robotic capabilities in exploration, rescue operations, and swarming behaviors in complex environments.
Collapse
Affiliation(s)
- Haitao Yang
- Institute of Flexible Electronics (IFE) & Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Shuo Ding
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
- Department of Biomedical Engineering, National University of Singapore, Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Jiahao Wang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Shuo Sun
- Department of Mechanical Engineering, National University of Singapore, Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Ruphan Swaminathan
- Department of Computer Science, Columbia University, New York, NY, 10027, USA
| | - Serene Wen Ling Ng
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Xinglong Pan
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Ghim Wei Ho
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore.
| |
Collapse
|
15
|
Xu J, Huang H, Sun C, Yu J, Wang M, Dong T, Wang S, Chen X, Cui T, Li J. Flexible Accelerated-Wound-Healing Antibacterial Hydrogel-Nanofiber Scaffold for Intelligent Wearable Health Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5438-5450. [PMID: 38112719 DOI: 10.1021/acsami.3c14445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Flexible epidermal sensors hold significant potential in personalized healthcare and multifunctional electronic skins. Nonetheless, achieving both robust sensing performance and efficient antibacterial protection, especially in medical paradigms involving electrophysiological signals for wound healing and intelligent health monitoring, remains a substantial challenge. Herein, we introduce a novel flexible accelerated-wound-healing biomaterial based on a hydrogel-nanofiber scaffold (HNFS) via electrostatic spinning and gel cross-linking. We effectively engineer a multifunctional tissue nanoengineered skin scaffold for wound treatment and health monitoring. Key features of HNFS include high tensile strength (24.06 MPa) and elasticity (214.67%), flexibility, biodegradability, and antibacterial properties, enabling assembly into versatile sensors for monitoring human motion and electrophysiological signals. Moreover, in vitro and in vivo experiments demonstrate that HNFS significantly enhances cell proliferation and skin wound healing, provide a comprehensive therapeutic strategy for smart sensing and tissue repair, and guide the development of high-performance "wound healing-health monitoring" bioelectronic skin scaffolds. Therefore, this study provides insights into crafting flexible and repairable skin sensors, holding potential for multifunctional health diagnostics and intelligent medical applications in intelligent wearable health monitoring and next-generation artificial skin fields.
Collapse
Affiliation(s)
- Jieyan Xu
- Department of General Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211106, P.R. China
| | - Hui Huang
- Department of General Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211106, P.R. China
| | - Cheng Sun
- Department of General Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211106, P.R. China
| | - Jiafei Yu
- Department of General Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211106, P.R. China
| | - Mingming Wang
- Department of General Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211106, P.R. China
| | - Ting Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, Jiangsu 210009, P.R. China
| | - Shiheng Wang
- Department of Pharmacy, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211106, P.R. China
| | - Xinhao Chen
- Department of General Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211106, P.R. China
| | - Tingting Cui
- Department of General Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211106, P.R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, Jiangsu 210009, P.R. China
| | - Jun Li
- Department of General Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211106, P.R. China
| |
Collapse
|
16
|
Tang Z, Lin X, Yu M, Mondal AK, Wu H. Recent advances in TEMPO-oxidized cellulose nanofibers: Oxidation mechanism, characterization, properties and applications. Int J Biol Macromol 2024; 259:129081. [PMID: 38161007 DOI: 10.1016/j.ijbiomac.2023.129081] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
Cellulose is the richest renewable polymer source on the earth. TEMPO-mediated oxidized cellulose nanofibers are deduced from enormously available wood biomass and functionalized with carboxyl groups. The preparation procedure of TOCNFs is more environmentally friendly compared to other cellulose, for example, MFC and CNCs. Due to the presence of functional carboxyl groups, TOCNF-based materials have been studied widely in different fields, including biomedicine, wastewater treatment, bioelectronics and others. In this review, the TEMPO oxidation mechanism, the properties and applications of TOCNFs are elaborated. Most importantly, the recent advanced applications and the beneficial role of TOCNFs in the various abovementioned fields are discussed. Furthermore, the performances and research progress on the fabrication of TOCNFs are summarized. It is expected that this timely review will help further research on the invention of novel material from TOCNFs and its applications in different advanced fields, including biomedicine, bioelectronics, wastewater treatment, and the energy sector.
Collapse
Affiliation(s)
- Zuwu Tang
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China
| | - Xinxing Lin
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China
| | - Meiqiong Yu
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China; College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, Fujian 350108, PR China
| | - Ajoy Kanti Mondal
- Institute of National Analytical Research and Service, Bangladesh Council of Scientific and Industrial Research, Dhanmondi, Dhaka 1205, Bangladesh.
| | - Hui Wu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, Fujian 350108, PR China.
| |
Collapse
|
17
|
Cui S, Zhang S, Zhang F, Lin R, Tang C, Jing X. Tannic acid-coated cellulose nanocrystal-reinforced transparent multifunctional hydrogels with UV-filtering for wearable flexible sensors. Carbohydr Polym 2024; 323:121385. [PMID: 37940280 DOI: 10.1016/j.carbpol.2023.121385] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 11/10/2023]
Abstract
Ionically conductive hydrogels are an ideal alternative material for applications in wearable flexible sensors to monitor human health. However, producing hydrogels with both high sensitivity and excellent versatility is difficult, and their transparency and UV-blocking properties are significantly limited. Here, with mussel- and gecko-inspired biomimicry, all-biomass-based hydrogels (OGTCGs) with self-adhesive, self-healing, transparent, UV-filtering, frost-resistant, environmentally stable, antibacterial, and biocompatible properties were designed and constructed via a simple one-step approach with a water/glycerol system and borax added without any crosslinker using synergistic dynamic covalent and noncovalent chemistry. The transparency of the OGTCG hydrogel reached 81.06 %, while the added tannic acid-coated cellulose nanocrystal (TA@CNC) induced a UV-blocking effect. The OGTCG hydrogel exhibited a high toughness (218.67 kPa) and modulus (100.32 kPa) reinforced by TA@CNC. The OGTCG hydrogel showed good self-healing abilities with an efficiency of over 90 % after 6 h. In a binary solvent system, the OGTCG hydrogel had environmental stability, as illustrated by density functional theory (DFT), greatly broadening its application range. Moreover, it had an electrical conductivity of 2.3 mS cm-1 and a sensitivity of 3.97. Therefore, with its rapid response and real-time monitoring capabilities, the OGTCG hydrogel shows great potential for applications in monitoring human health.
Collapse
Affiliation(s)
- Shuyuan Cui
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Sufeng Zhang
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Fengjiao Zhang
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Rui Lin
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Chengfang Tang
- School of Stomatology, Xi'an Medical University, Xi'an 710021, China
| | - Xiaokai Jing
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
18
|
Zheng Y, Wang J, Cui T, Zhu J, Gui Z. Advancing high-performance tailored dual-crosslinking network organo-hydrogel flexible device for wireless wearable sensing. J Colloid Interface Sci 2024; 653:56-66. [PMID: 37708732 DOI: 10.1016/j.jcis.2023.09.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/03/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023]
Abstract
Conductive hydrogels are essential for enabling long-term and reliable signal sensing in wearable electronics due to their tunable flexibility, stimulus responsiveness, and multimodal sensing integration. However, developing durable and dependable integrated hydrogel-based flexible devices has been challenging due to mismatched mechanical properties, limited water retention capability, and reduced flexibility. This work addresses these challenges by employing a tailored physical-chemical dual-crosslinking strategy to fabricate dynamically reversible organo-hydrogels with high performance. The resultant organo-hydrogels exhibit exceptional characteristics, including high stretchability (up to ∼495% strain), remarkable toughness (with tensile and compressive strengths of ∼1350 kPa and ∼9370 kPa, respectively), and outstanding transparency (∼90.3%). Moreover, they demonstrate excellent long-term water retention ability (>2424 h, >97%). Notably, the organo-hydrogel based sensor exhibits heightened sensitivity for monitoring physiological signals and motions. Furthermore, our integrated wireless wearable sensing system efficiently captures and transmits various human physiological signals and motion information in real-time. This research advances the development of customized devices utilizing functional organo-hydrogel materials, making contributions to fulfilling the increasing demand for high-performance wireless wearable sensing.
Collapse
Affiliation(s)
- Yapeng Zheng
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, PR China
| | - Jingwen Wang
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, PR China
| | - Tianyang Cui
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, PR China
| | - Jixin Zhu
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, PR China.
| | - Zhou Gui
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, PR China.
| |
Collapse
|
19
|
He X, Wang Y, Yang P, Lin L, Liu S, Shao Z, Zhang K, Yao Y. High-Performance Graphene Biocomposite Enabled by Fe 3+ Coordination for Thermal Management. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54886-54897. [PMID: 37963338 DOI: 10.1021/acsami.3c10894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Emerging biocomposites with excellent heat dissipation capabilities and inherent sustainability are urgently needed to address the cooling issues of modern electronics and growing environmental concerns. However, the moisture stability, mechanical performance, thermal conductivity, and even flame retardancy of biomass-based materials are generally insufficient for practical thermal management applications. Herein, we present a high-performance graphene biocomposite consisting of carboxylated cellulose nanofibers and graphene nanosheets through an evaporation-induced self-assembly and subsequent Fe3+ cross-linking strategy. The Fe3+ coordination plays a critical role in stabilizing the material structure, thereby improving the mechanical strength and water stability of the biocomposite films, and its effect is revealed by density functional theory calculations. The hierarchical structure of the biocomposite films also leads to a high in-plane thermal conductivity of 42.5 W m-1 K-1, enabling a superior heat transfer performance. Furthermore, the resultant biocomposite films exhibit outstanding Joule heating performance with a fast thermal response and long-term stability, improved thermal stability, and flame retardancy. Therefore, such a general strategy and the desired overall properties of the biocomposite films offer wide application prospects for functional and safe thermal management.
Collapse
Affiliation(s)
- Xuhua He
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Ying Wang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Peng Yang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Lin Lin
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Shizhuo Liu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Zhipeng Shao
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Kai Zhang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Yagang Yao
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| |
Collapse
|
20
|
Mikhailidi A, Ungureanu E, Belosinschi D, Tofanica BM, Volf I. Cellulose-Based Metallogels-Part 3: Multifunctional Materials. Gels 2023; 9:878. [PMID: 37998968 PMCID: PMC10671087 DOI: 10.3390/gels9110878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
The incorporation of the metal phase into cellulose hydrogels, resulting in the formation of metallogels, greatly expands their application potential by introducing new functionalities and improving their performance in various fields. The unique antiviral, antibacterial, antifungal, and anticancer properties of metal and metal oxide nanoparticles (Ag, Au, Cu, CuxOy, ZnO, Al2O3, TiO2, etc.), coupled with the biocompatibility of cellulose, allow the development of composite hydrogels with multifunctional therapeutic potential. These materials can serve as efficient carriers for controlled drug delivery, targeting specific cells or pathogens, as well as for the design of artificial tissues or wound and burn dressings. Cellulose-based metallogels can be used in the food packaging industry to provide biodegradable and biocidal materials to extend the shelf life of the goods. Metal and bimetallic nanoparticles (Au, Cu, Ni, AuAg, and AuPt) can catalyze chemical reactions, enabling composite cellulose hydrogels to be used as efficient catalysts in organic synthesis. In addition, metal-loaded hydrogels (with ZnO, TiO2, Ag, and Fe3O4 nanoparticles) can exhibit enhanced adsorption capacities for pollutants, such as dyes, heavy metal ions, and pharmaceuticals, making them valuable materials for water purification and environmental remediation. Magnetic properties imparted to metallogels by iron oxides (Fe2O3 and Fe3O4) simplify the wastewater treatment process, making it more cost-effective and environmentally friendly. The conductivity of metallogels due to Ag, TiO2, ZnO, and Al2O3 is useful for the design of various sensors. The integration of metal nanoparticles also allows the development of responsive materials, where changes in metal properties can be exploited for stimuli-responsive applications, such as controlled release systems. Overall, the introduction of metal phases augments the functionality of cellulose hydrogels, expanding their versatility for diverse applications across a broad spectrum of industries not envisaged during the initial research stages.
Collapse
Affiliation(s)
- Aleksandra Mikhailidi
- Higher School of Printing and Media Technologies, St. Petersburg State University of Industrial Technologies and Design, 18 Bolshaya Morskaya Street, 191186 St. Petersburg, Russia;
| | - Elena Ungureanu
- “Ion Ionescu de la Brad” University of Life Sciences Iasi, 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania;
| | - Dan Belosinschi
- Innovations Institute in Ecomaterials, Ecoproducts, and Ecoenergies, University of Quebec at Trois-Rivières, 3351, Boul. des Forges, Trois-Rivières, QC G8Z 4M3, Canada;
- CellON AS, Lakkegata 75C, NO-0562 Oslo, Norway
| | - Bogdan-Marian Tofanica
- “Gheorghe Asachi” Technical University of Iasi, 73 Prof. Dr. Docent D. Mangeron Boulevard, 700050 Iasi, Romania
- IF2000 Academic Foundation, 73 Prof. Dr. Docent D. Mangeron Boulevard, 700050 Iasi, Romania
| | - Irina Volf
- “Gheorghe Asachi” Technical University of Iasi, 73 Prof. Dr. Docent D. Mangeron Boulevard, 700050 Iasi, Romania
| |
Collapse
|
21
|
Luo X, Yuan Z, Xie X, Xie Y, Lv H, Zhao J, Wang H, Gao Y, Zhao L, Wang Y, Wu J. Amino acid-induced rapid gelation and mechanical reinforcement of hydrogels with low-hysteresis and self-recoverable and fatigue-resistant properties. MATERIALS HORIZONS 2023; 10:4303-4316. [PMID: 37697907 DOI: 10.1039/d3mh00483j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Hydrogels with rapid gelation ability and robust mechanical properties are highly desirable for nascent applications in biomedical, wearable electronic, industrial and agricultural fields. However, current rapid-gelation hydrogels are compromised by poor mechanical properties, complex design of precursor molecular structures and limited precursor species. Herein, we propose a facile and universal strategy to achieve rapid gelation, strengthening and toughening of free-radical polymerized hydrogels by introducing cheap and accessible amino acids. Amino acids not only activate persulfate to quickly produce free radicals and thus induce fast free radical polymerization, but also can form strong hydrogen bonds with the network chains to strengthen and toughen the hydrogels. For example, with the presence of L-serine, the acrylamide (AM) monomer shows rapid gelation within tens of seconds, and moreover the resulting hydrogel reaches a tensile strength of 0.45 MPa and a breaking strain of 2060%. More importantly, owing to the extremely dynamic feature of the hydrogen bonds between L-serine molecules and network chains, the hydrogel possesses the advantages of low hysteresis, rapid self-recovery capability and outstanding fatigue resistance. Furthermore, this strategy is general to a wide range of amino acids and monomers. We also demonstrate that this rapid, controllable and universal strategy for the fabrication of mechanically robust hydrogels holds tremendous potential for diverse practical applications, such as flexible electronic sensors and ultraviolet (UV)-blocking artificial skins.
Collapse
Affiliation(s)
- Xingqi Luo
- College of Chemistry and Materials Science, Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610068, China.
| | - Zhaoyang Yuan
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Xiangyan Xie
- College of Chemistry and Materials Science, Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610068, China.
| | - Yuanjie Xie
- College of Chemistry and Materials Science, Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610068, China.
| | - Hongyi Lv
- College of Chemistry and Materials Science, Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610068, China.
| | - Jin Zhao
- PerkinElmer, Inc, Chengdu 610213, China
| | - Hao Wang
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yuanji Gao
- College of Chemistry and Materials Science, Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610068, China.
| | - Lijuan Zhao
- College of Chemistry and Materials Science, Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610068, China.
| | - Yi Wang
- College of Chemistry and Materials Science, Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610068, China.
| | - Jinrong Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
22
|
Sun S, Xu Y, Maimaitiyiming X. Tough polyvinyl alcohol-gelatin biological macromolecules ionic hydrogel temperature, humidity, stress and strain, sensors. Int J Biol Macromol 2023; 249:125978. [PMID: 37506797 DOI: 10.1016/j.ijbiomac.2023.125978] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/12/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023]
Abstract
High strength, high toughness and high sensitivity were some of the most popular characteristics of flexible sensors. However, the mechanical properties and reproducibility of current single biomacromolecule gelatin hydrogel sensors are lower, and few hydrogel sensors have been able to provide excellent mechanical properties and flexibility at the same time so far. To address this challenge, a simple method to prepare tough polyvinyl alcohol (PVA) and gelatin hydrogel was proposed in this study. The PVA-gelatin-Fe3+ biological macromolecules hydrogel was prepared by a freeze-casting-assisted solution substitution method, which exhibited high strength (2.5 MPa), toughness (7.22 MJ m-3), and excellent temperature, humidity, stress, strain, and human motion sensing properties. This combination of mechanical properties and flexibility makes PVA-gelatin biological macromolecules hydrogel a promising material for flexible sensing. In addition, an ionic immersion strategy could also impart multiple functions to the hydrogel and be applied to various hydrogel sensor materials. Thus, this work provided an all-around solution for the preparation of advanced and robust sensors with good application prospects.
Collapse
Affiliation(s)
- Shuang Sun
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, PR China
| | - Yizhe Xu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, PR China
| | - Xieraili Maimaitiyiming
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, PR China.
| |
Collapse
|
23
|
Liu C, Zhang R, Wang Y, Wei C, Li F, Qing N, Tang L. Highly adhesive chitosan/poly(vinyl alcohol) hydrogels via the synergy of phytic acid and boric acid and their application as highly sensitive and widely linear strain sensors. MATERIALS HORIZONS 2023; 10:3488-3498. [PMID: 37249353 DOI: 10.1039/d3mh00739a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In recent years, flexible strain sensors have attracted increasing interest, and accurate sensing and comfortable wearables are highly demanded. However, current flexible strain sensors fail to have wide linearity and high sensitivity simultaneously, and their adhesion is insufficient for convenient wear and precise motion monitoring. Herein, chitosan/poly(vinyl alcohol) hydrogels with phytic acid (PA) and boric acid (BA) as crosslinkers (CS/PVA-PA-BA hydrogels) were fabricated. The synergy of phytic acid and boric acid not only improved the mechanical properties of the obtained hydrogels (1070% of fracture strain and 0.83 MPa of fracture stress), but also provided them with outstandingly strong adhesion. Their adhesive strength was up to 527 kPa for a variety of materials, including glass, silica rubber, steel, polytetrafluoroethylene (PTFE), and skin. In addition, the hydrogel-based strain sensor demonstrated high sensitivity (gauge factor = 4.61), a wide linear strain range (up to 1000%, R2 = 0.996), fast response time (90 ms), and good stability. A flexible strain sensor with such high sensitivity and wide linear range simultaneously, to the best of our knowledge, has never been reported before. The development of CS/PVA-PA-BA hydrogels is expected to inspire a novel method for high-adhesive and high-sensing-performance wearable electronics.
Collapse
Affiliation(s)
- Cuiwen Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China.
| | - Ru Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China.
| | - Yao Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China.
| | - Chengmeng Wei
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China.
| | - Feng Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China.
| | - Ning Qing
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China.
| | - Liuyan Tang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China.
| |
Collapse
|
24
|
Mikhailidi A, Volf I, Belosinschi D, Tofanica BM, Ungureanu E. Cellulose-Based Metallogels-Part 2: Physico-Chemical Properties and Biological Stability. Gels 2023; 9:633. [PMID: 37623088 PMCID: PMC10453698 DOI: 10.3390/gels9080633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
Metallogels represent a class of composite materials in which a metal can be a part of the gel network as a coordinated ion, act as a cross-linker, or be incorporated as metal nanoparticles in the gel matrix. Cellulose is a natural polymer that has a set of beneficial ecological, economic, and other properties that make it sustainable: wide availability, renewability of raw materials, low-cost, biocompatibility, and biodegradability. That is why metallogels based on cellulose hydrogels and additionally enriched with new properties delivered by metals offer exciting opportunities for advanced biomaterials. Cellulosic metallogels can be either transparent or opaque, which is determined by the nature of the raw materials for the hydrogel and the metal content in the metallogel. They also exhibit a variety of colors depending on the type of metal or its compounds. Due to the introduction of metals, the mechanical strength, thermal stability, and swelling ability of cellulosic materials are improved; however, in certain conditions, metal nanoparticles can deteriorate these characteristics. The embedding of metal into the hydrogel generally does not alter the supramolecular structure of the cellulose matrix, but the crystallinity index changes after decoration with metal particles. Metallogels containing silver (0), gold (0), and Zn(II) reveal antimicrobial and antiviral properties; in some cases, promotion of cell activity and proliferation are reported. The pore system of cellulose-based metallogels allows for a prolonged biocidal effect. Thus, the incorporation of metals into cellulose-based gels introduces unique properties and functionalities of this material.
Collapse
Affiliation(s)
- Aleksandra Mikhailidi
- Higher School of Printing and Media Technologies, St. Petersburg State University of Industrial Technologies and Design, 18 Bolshaya Morskaya Street, 191186 St. Petersburg, Russia;
| | - Irina Volf
- “Gheorghe Asachi” Technical University of Iasi, 73 Prof. Dr. Docent D. Mangeron Boulevard, 700050 Iasi, Romania
| | - Dan Belosinschi
- Département de Chimie-Biologie/Biologie Medicale, Université du Québec à Trois-Rivières, Trois-Rivieres, QC G8Z 4M3, Canada;
| | - Bogdan-Marian Tofanica
- “Gheorghe Asachi” Technical University of Iasi, 73 Prof. Dr. Docent D. Mangeron Boulevard, 700050 Iasi, Romania
- IF2000 Academic Foundation, 73 Prof. Dr. Docent D. Mangeron Boulevard, 700050 Iasi, Romania
| | - Elena Ungureanu
- “Ion Ionescu de la Brad” University of Life Sciences Iasi, 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania;
| |
Collapse
|
25
|
Li J, Deng Y, Fu H, Zhang Y, Zhang Y, Fu L, Xu C, Lin B. Multifunctional Starch-Based Sensor with Non-Covalent Network to Achieve "3R" Circulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208116. [PMID: 36890772 DOI: 10.1002/smll.202208116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/15/2023] [Indexed: 06/08/2023]
Abstract
With the consumption of disposable electronic devices increasing, it is meaningful but also a big challenge to develop reusable and sustainable materials to replace traditional single-use sensors. Herein, a clever strategy for constructing a multifunctional sensor with 3R circulation (renewable, reusable, pollution-reducing biodegradable) is presented, in which silver nanoparticles (AgNPs) with multiple interactions are introduced into a reversible non-covalent cross-linking network composed of biocompatible and degradable carboxymethyl starch (CMS) and polyvinyl alcohol (PVA) to simultaneously obtain high mechanical conductivity and long-term antibacterial properties by a one-pot method. Surprisingly, the assembled sensor shows high sensitivity (gauge factor up to 4.02), high conductivity (0.1753 S m-1 ), low detection limit (0.5%), long-term antibacterial ability (more than 7 days), and stable sensing performance. Thus, the CMS/PVA/AgNPs sensor can not only accurately monitor a series of human behavior, but also identify handwriting recognition from different people. More importantly, the abandoned starch-based sensor can form a 3R circulation. Especially, the fully renewable film still shows excellent mechanical performance, achieving reusable without sacrificing its original function. Therefore, this work provides a new horizon for multifunctional starch-based materials as sustainable substrates for replacing traditional single-use sensors.
Collapse
Affiliation(s)
- Jianfang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Yongfu Deng
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Hao Fu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Yuwei Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Yuancheng Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Lihua Fu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Chuanhui Xu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Baofeng Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China
| |
Collapse
|
26
|
Tamaddon F, Bagheri F, Ahmadi-AhmadAbadi E. Selective preparation of crystalline or fibrous nano-cellulose carboxylate to fabricate an anti-bacterial hydrogel in co-operation with ZnO and recycled gelatin. Int J Biol Macromol 2023:124922. [PMID: 37247711 DOI: 10.1016/j.ijbiomac.2023.124922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023]
Abstract
Bio-polymeric based nano-composites and hydrogels are newsworthy nano-biomaterials. Herein, crystalline or fibrous nano-cellulose carboxylate (NCCC and NCCF) were selectively prepared via the controllable direct oxidative-hydrolysis of MC in alkaline NaClO2 at 1:2 mol ratio, 90 °C, and 24 h for NCCC and at 1:1 mol ratio, 70 °C, and 20 h for NCCF. Characterization of NCCC and NCCF were performed by comparative Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), and energy dispersive X-ray spectroscopy (EDS). Then, NCCC was cross-linked to the recycled gelatin (Gel) from the medicine capsules and the as-prepared nano-ZnO by maleic anhydride (MA) to give the novel hydrogel Gel/MA/NCCC/nano-ZnO. Nano-ZnO plays multi-roles in this hydrogel preparation, as either catalyst for the esterification of cellulose hydroxyls and amidation of gelatin amino groups or as the anti-bacterial part of hydrogel. The in vitro anti-bacterial activity results against the three gram-negative and gram-positive bacteria by well diffusion method confirmed Gel/MA/NCCC/nano-ZnO as an antibacterial agent with the activity order of P. aeruginosa > S. aureus > E. coli. The top anti-bacterial activity of this hydrogel against the gram-negative resistant bacteria of P. aeruginosa suggests its potential for biomedical applications.
Collapse
Affiliation(s)
- Fatemeh Tamaddon
- Department of Chemistry, Faculty of Science, Yazd University, Yazd 89195-741, Iran.
| | | | | |
Collapse
|
27
|
Zhang Y, Deng W, Wu M, Rahmaninia M, Xu C, Li B. Tailoring Functionality of Nanocellulose: Current Status and Critical Challenges. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091489. [PMID: 37177034 PMCID: PMC10179792 DOI: 10.3390/nano13091489] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Nanocellulose (NC) isolated from natural cellulose resources, which mainly includes cellulose nanofibril (CNF) and cellulose nanocrystal (CNC), has garnered increased attention in recent decades due to its outstanding physical and chemical properties. Various chemical modifications have been developed with the aim of surface-modifying NC for highly sophisticated applications. This review comprehensively summarizes the chemical modifications applied to NC so far in order to introduce new functionalities to the material, such as silanization, esterification, oxidation, etherification, grafting, coating, and others. The new functionalities obtained through such surface-modification methods include hydrophobicity, conductivity, antibacterial properties, and absorbability. In addition, the incorporation of NC in some functional materials, such as films, wearable sensors, cellulose nanospheres, aerogel, hydrogels, and nanocomposites, is discussed in relation to the tailoring of the functionality of NC. It should be pointed out that some issues need to be addressed during the preparation of NC and NC-based materials, such as the low reactivity of these raw materials, the difficulties involved in their scale-up, and their high energy and water consumption. Over the past decades, some methods have been developed, such as the use of pretreatment methods, the adaptation of low-cost starting raw materials, and the use of environmentally friendly chemicals, which support the practical application of NC and NC-based materials. Overall, it is believed that as a green, sustainable, and renewable nanomaterial, NC is will be suitable for large-scale applications in the future.
Collapse
Affiliation(s)
- Yidong Zhang
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, FI-20500 Turku, Finland
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Wangfang Deng
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, FI-20500 Turku, Finland
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Meiyan Wu
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Mehdi Rahmaninia
- Wood and Paper Science and Technology Department, Faculty of Natural Resources, Tarbiat Modares University, Noor 46417-76489, Iran
| | - Chunlin Xu
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, FI-20500 Turku, Finland
| | - Bin Li
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| |
Collapse
|
28
|
Khare E, Grewal DS, Buehler MJ. Bond clusters control rupture force limit in shear loaded histidine-Ni 2+ metal-coordinated proteins. NANOSCALE 2023; 15:8578-8588. [PMID: 37092811 DOI: 10.1039/d3nr01287e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Dynamic noncovalent interactions are pivotal to the structure and function of biological proteins and have been used in bioinspired materials for similar roles. Metal-coordination bonds, in particular, are especially tunable and enable control over static and dynamic properties when incorporated into synthetic materials. Despite growing efforts to engineer metal-coordination bonds to produce strong, tough, and self-healing materials, the systematic characterization of the exact contribution of these bonds towards mechanical strength and the effect of geometric arrangements is missing, limiting the full design potential of these bonds. In this work, we engineer the cooperative rupture of metal-coordination bonds to increase the rupture strength of metal-coordinated peptide dimers. Utilizing all-atom steered molecular dynamics simulations on idealized bidentate histidine-Ni2+ coordinated peptides, we show that histidine-Ni2+ bonds can rupture cooperatively in groups of two to three bonds. We find that there is a strength limit, where adding additional coordination bonds does not contribute to the additional increase in the protein rupture strength, likely due to the highly heterogeneous rupture behavior exhibited by the coordination bonds. Further, we show that this coordination bond limit is also found natural metal-coordinated biological proteins. Using these insights, we quantitatively suggest how other proteins can be rationally designed with dynamic noncovalent interactions to exhibit cooperative bond breaking behavior. Altogether, this work provides a quantitative analysis of the cooperativity and intrinsic strength limit for metal-coordination bonds with the aim of advancing clear guiding molecular principles for the mechanical design of metal-coordinated materials.
Collapse
Affiliation(s)
- Eesha Khare
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, 33 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | - Darshdeep S Grewal
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, 33 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | - Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, 33 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
29
|
Qiao Y, Luo J, Cui T, Liu H, Tang H, Zeng Y, Liu C, Li Y, Jian J, Wu J, Tian H, Yang Y, Ren TL, Zhou J. Soft Electronics for Health Monitoring Assisted by Machine Learning. NANO-MICRO LETTERS 2023; 15:66. [PMID: 36918452 PMCID: PMC10014415 DOI: 10.1007/s40820-023-01029-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
Due to the development of the novel materials, the past two decades have witnessed the rapid advances of soft electronics. The soft electronics have huge potential in the physical sign monitoring and health care. One of the important advantages of soft electronics is forming good interface with skin, which can increase the user scale and improve the signal quality. Therefore, it is easy to build the specific dataset, which is important to improve the performance of machine learning algorithm. At the same time, with the assistance of machine learning algorithm, the soft electronics have become more and more intelligent to realize real-time analysis and diagnosis. The soft electronics and machining learning algorithms complement each other very well. It is indubitable that the soft electronics will bring us to a healthier and more intelligent world in the near future. Therefore, in this review, we will give a careful introduction about the new soft material, physiological signal detected by soft devices, and the soft devices assisted by machine learning algorithm. Some soft materials will be discussed such as two-dimensional material, carbon nanotube, nanowire, nanomesh, and hydrogel. Then, soft sensors will be discussed according to the physiological signal types (pulse, respiration, human motion, intraocular pressure, phonation, etc.). After that, the soft electronics assisted by various algorithms will be reviewed, including some classical algorithms and powerful neural network algorithms. Especially, the soft device assisted by neural network will be introduced carefully. Finally, the outlook, challenge, and conclusion of soft system powered by machine learning algorithm will be discussed.
Collapse
Affiliation(s)
- Yancong Qiao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China.
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| | - Jinan Luo
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Tianrui Cui
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - Haidong Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Hao Tang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Yingfen Zeng
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - Chang Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Yuanfang Li
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Jinming Jian
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - Jingzhi Wu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - He Tian
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - Yi Yang
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - Tian-Ling Ren
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Jianhua Zhou
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China.
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
30
|
Sun S, Hao F, Maimaitiyiming X. 3D Print Polyaniline/Gelatin Hydrogels as Wearable Multifunctional Sensors. ChemistrySelect 2022. [DOI: 10.1002/slct.202203286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Shuang Sun
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University, Urumqi 830046 Xinjiang PR China
| | - Feiyue Hao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University, Urumqi 830046 Xinjiang PR China
| | - Xieraili Maimaitiyiming
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University, Urumqi 830046 Xinjiang PR China
| |
Collapse
|
31
|
Li W, Tao LQ, Kang MC, Li CH, Luo CY, He G, Sang TY, Wang P. Tunable mechanical, self-healing hydrogels driven by sodium alginate and modified carbon nanotubes for health monitoring. Carbohydr Polym 2022; 295:119854. [DOI: 10.1016/j.carbpol.2022.119854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/22/2022] [Accepted: 07/06/2022] [Indexed: 12/29/2022]
|
32
|
Dong F, Yang X, Guo L, Qian Y, Sun P, Huang Z, Xu X, Liu H. A tough, healable, and recyclable conductive polyurethane/carbon nanotube composite. J Colloid Interface Sci 2022; 631:239-248. [DOI: 10.1016/j.jcis.2022.11.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
|
33
|
Shekh MI, Zhu G, Xiong W, Wu W, Stadler FJ, Patel D, Zhu C. Dynamically bonded, tough, and conductive MXene@oxidized sodium alginate: chitosan based multi-networked elastomeric hydrogels for physical motion detection. Int J Biol Macromol 2022; 224:604-620. [DOI: 10.1016/j.ijbiomac.2022.10.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 11/05/2022]
|
34
|
Zhang R, Zhao W, Ning F, Zhen J, Qiang H, Zhang Y, Liu F, Jia Z. Alginate Fiber-Enhanced Poly(vinyl alcohol) Hydrogels with Superior Lubricating Property and Biocompatibility. Polymers (Basel) 2022; 14:polym14194063. [PMID: 36236011 PMCID: PMC9571041 DOI: 10.3390/polym14194063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/19/2022] Open
Abstract
The design of a novel interpenetrating network hydrogel inspired by the microscopic architecture of natural cartilage based on a supramolecular sodium alginate (SA) nanofibril network is reported in this paper. The mechanical strength and toughness of the poly(vinyl alcohol) (PVA) hydrogel were significantly improved after being incorporated with the alginate nanofibril network. The multiple hydrogen bonds between PVA chains and alginate fibers provided an efficient energy dissipation, thus leading to a significant increase in the mechanical strength of the PVA/SA/NaCl hydrogel. The PVA/SA/NaCl hydrogel demonstrated superior water-lubrication and load-bearing performance due to noncovalent interactions compared with pure PVA hydrogels. Moreover, the bioactivity of the PVA/SA/NaCl hydrogel was proved by the MC3T3 cell proliferation and viability assays over 7 days. Therefore, alginate fiber-enhanced hydrogels with high strength and low friction properties are expected to be used as novel biomimetic lubrication materials.
Collapse
Affiliation(s)
- Ran Zhang
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
- Correspondence: (R.Z.); (Z.J.); Tel.: +86-177-6208-0286 (R.Z.); +86-150-6642-9105 (Z.J.)
| | - Wenhui Zhao
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Fangdong Ning
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Jinming Zhen
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Huifen Qiang
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
- Liaocheng People’s Hospital, Liaocheng 252000, China
| | - Yujue Zhang
- Liaocheng People’s Hospital, Liaocheng 252000, China
| | - Fengzhen Liu
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
- Liaocheng People’s Hospital, Liaocheng 252000, China
| | - Zhengfeng Jia
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
- Correspondence: (R.Z.); (Z.J.); Tel.: +86-177-6208-0286 (R.Z.); +86-150-6642-9105 (Z.J.)
| |
Collapse
|
35
|
Wu S, Guo J, Wang Y, Xie H, Zhou S. Cryopolymerized Polyampholyte Gel with Antidehydration, Self-Healing, and Shape-Memory Properties for Sustainable and Tunable Sensing Electronics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42317-42327. [PMID: 36067465 DOI: 10.1021/acsami.2c13223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hydrogel-based wearable flexible electronics are attracting tremendous interest for use in human healthcare. However, many of the existing hydrogel electronics are often susceptible to dehydration, leading to weakened stretchability and inaccurate signal extraction. Besides, hydrogels are desired to be much smarter for self-repairing physical damage and enabling performance manipulation. Herein, we develop a kind of cryopolymerized polyampholyte gels with the multifunctionality of antidehydration, self-healing, and shape-memory for wearable sensing electronics. The antidehydration property is enabled by the incorporation of glycerol, endowing the sensing electronics with excellent stretchability and strain-sensing performance in long-term monitoring. The ionic bonds in the polyampholyte gel possess a dynamic feature regulated by alternant NaCl(aq) and H2O treatments, laying the foundation for self-healing and shape-memory. As a result, the sensing electronics can automatically repair physical damages without any sacrifice in sensing performance, after healing both conductivity and strain-sensing performance could return to the initial levels. The shape-memory function enables the temporal adjustment of the initial state of the sensing electronics; both the conductivity and sensing performance, for instance, signal intensity, can be manually manipulated. In all, the cryopolymerized polyampholyte gels with antidehydration, self-healing, and shape-memory properties can be an inspiration to develop sustainable and tunable gel-based electronics for human motion monitoring.
Collapse
Affiliation(s)
- Shanshan Wu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jing Guo
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yilei Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Hui Xie
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| |
Collapse
|