1
|
Song Z, Wang X, Feng W, Armand M, Zhou Z, Zhang H. Designer Anions for Better Rechargeable Lithium Batteries and Beyond. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310245. [PMID: 38839065 DOI: 10.1002/adma.202310245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 04/17/2024] [Indexed: 06/07/2024]
Abstract
Non-aqueous electrolytes, generally consisting of metal salts and solvating media, are indispensable elements for building rechargeable batteries. As the major sources of ionic charges, the intrinsic characters of salt anions are of particular importance in determining the fundamental properties of bulk electrolyte, as well as the features of the resulting electrode-electrolyte interphases/interfaces. To cope with the increasing demand for better rechargeable batteries requested by emerging application domains, the structural design and modifications of salt anions are highly desired. Here, salt anions for lithium and other monovalent (e.g., sodium and potassium) and multivalent (e.g., magnesium, calcium, zinc, and aluminum) rechargeable batteries are outlined. Fundamental considerations on the design of salt anions are provided, particularly involving specific requirements imposed by different cell chemistries. Historical evolution and possible synthetic methodologies for metal salts with representative salt anions are reviewed. Recent advances in tailoring the anionic structures for rechargeable batteries are scrutinized, and due attention is paid to the paradigm shift from liquid to solid electrolytes, from intercalation to conversion/alloying-type electrodes, from lithium to other kinds of rechargeable batteries. The remaining challenges and key research directions in the development of robust salt anions are also discussed.
Collapse
Affiliation(s)
- Ziyu Song
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Xingxing Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Wenfang Feng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Michel Armand
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, Vitoria-Gasteiz, 01510, Spain
| | - Zhibin Zhou
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Heng Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| |
Collapse
|
2
|
Seo J, Im J, Kim M, Song D, Yoon S, Cho KY. Recent Progress of Advanced Functional Separators in Lithium Metal Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312132. [PMID: 38453671 DOI: 10.1002/smll.202312132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/26/2024] [Indexed: 03/09/2024]
Abstract
As a representative in the post-lithium-ion batteries (LIBs) landscape, lithium metal batteries (LMBs) exhibit high-energy densities but suffer from low coulombic efficiencies and short cycling lifetimes due to dendrite formation and complex side reactions. Separator modification holds the most promise in overcoming these challenges because it utilizes the original elements of LMBs. In this review, separators designed to address critical issues in LMBs that are fatal to their destiny according to the target electrodes are focused on. On the lithium anode side, functional separators reduce dendrite propagation with a conductive lithiophilic layer and a uniform Li-ion channel or form a stable solid electrolyte interphase layer through the continuous release of active agents. The classification of functional separators solving the degradation stemming from the cathodes, which has often been overlooked, is summarized. Structural deterioration and the resulting leakage from cathode materials are suppressed by acidic impurity scavenging, transition metal ion capture, and polysulfide shuttle effect inhibition from functional separators. Furthermore, flame-retardant separators for preventing LMB safety issues and multifunctional separators are discussed. Further expansion of functional separators can be effectively utilized in other types of batteries, indicating that intensive and extensive research on functional separators is expected to continue in LIBs.
Collapse
Affiliation(s)
- Junhyeok Seo
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi, 15588, Republic of Korea
| | - Juyeon Im
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi, 15588, Republic of Korea
| | - Minjae Kim
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi, 15588, Republic of Korea
| | - Dahee Song
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi, 15588, Republic of Korea
| | - Sukeun Yoon
- Division of Advanced Materials Engineering, Kongju National University, Cheonan, Chungnam, 31080, Republic of Korea
| | - Kuk Young Cho
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi, 15588, Republic of Korea
| |
Collapse
|
3
|
Zhen C, Yang X, Wei X, Zhu Y, Han S, Shi X, Deng L, Gu MD. Revealing Lithium Nitrate-Mediated Solid-Electrolyte Interphase of Lithium Metal Anode via Cryogenic Transmission Electron Microscopy. NANO LETTERS 2024; 24:6714-6721. [PMID: 38781452 DOI: 10.1021/acs.nanolett.4c01351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The cycle stability of lithium metal anode (LMA) largely depends on solid-electrolyte interphase (SEI). Electrolyte engineering is a common strategy to adjust SEI properties, yet understanding its impact is challenging due to limited knowledge on ultrafine SEI structures. Herein, using cryogenic transmission electron microscopy, we reveal the atomic-level SEI structure of LMA in ether-based electrolytes, focusing on the role of LiNO3 additives in SEI modulation at different temperature (25 and 50 °C). Poor cycle stability of LMA in the baseline electrolyte without LiNO3 additives stems from the Li2CO3-rich mosaic-type SEI. Increased LiNO3 content and elevated operating temperature enhance cyclic performance by forming bilayer or multilayer SEI structures via preferential LiNO3 decomposition, but may thicken the SEI, leading to reduced initial Coulombic efficiency and increased overpotential. The optimal SEI features a multilayer structure with Li2O-rich inner layer and closely packed grains in the outer layer, minimizing electrolyte decomposition or corrosion.
Collapse
Affiliation(s)
- Cheng Zhen
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang 315200, China
| | - Xuming Yang
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xianbin Wei
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang 315200, China
| | - Yuanmin Zhu
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Shaobo Han
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang 315200, China
| | - Xiaobo Shi
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Li Deng
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - M Danny Gu
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang 315200, China
| |
Collapse
|
4
|
Zhang J, Yan X, Cheng Z, Han Y, Zhang Y, Dong Y. Applications, prospects and challenges of metal borides in lithium sulfur batteries. J Colloid Interface Sci 2024; 657:511-528. [PMID: 38070337 DOI: 10.1016/j.jcis.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/21/2023] [Accepted: 12/03/2023] [Indexed: 01/02/2024]
Abstract
Although the lithium-sulfur (Li-S) battery has a theoretical capacity of up to 1675 mA h g-1, its practical application is limited owing to some problems, such as the shuttle effect of soluble lithium polysulfides (LiPSs) and the growth of Li dendrites. It has been verified that some transition metal compounds exhibit strong polarity, good chemical adsorption and high electrocatalytic activities, which are beneficial for the rapid conversion of intermediate product in order to effectively inhibit the "shuttle effect". Remarkably, being different from other metal compounds, it is a significant characteristic that both metal and boron atoms of transition metal borides (TMBs) can bind to LiPSs, which have shown great potential in recent years. Here, for the first time, almost all existing studies on TMBs employed in Li-S cells are comprehensively summarized. We firstly clarify special structures and electronic features of metal borides to show their great potential, and then existing strategies to improve the electrochemical properties of TMBs are summarized and discussed in the focus sections, such as carbon-matrix construction, morphology control, heteroatomic doping, heterostructure formation, phase engineering, preparation techniques. Finally, the remaining challenges and perspectives are proposed to point out a direction for realizing high-energy and long-life Li-S batteries.
Collapse
Affiliation(s)
- Jianmin Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Xueli Yan
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zihao Cheng
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yumiao Han
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ying Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yutao Dong
- College of Science, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
5
|
Duan H, You Y, Wang G, Ou X, Wen J, Huang Q, Lyu P, Liang Y, Li Q, Huang J, Wang YX, Liu HK, Dou SX, Lai WH. Lithium-Ion Charged Polymer Channels Flattening Lithium Metal Anode. NANO-MICRO LETTERS 2024; 16:78. [PMID: 38190094 PMCID: PMC10774241 DOI: 10.1007/s40820-023-01300-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024]
Abstract
The concentration difference in the near-surface region of lithium metal is the main cause of lithium dendrite growth. Resolving this issue will be key to achieving high-performance lithium metal batteries (LMBs). Herein, we construct a lithium nitrate (LiNO3)-implanted electroactive β phase polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) crystalline polymorph layer (PHL). The electronegatively charged polymer chains attain lithium ions on the surface to form lithium-ion charged channels. These channels act as reservoirs to sustainably release Li ions to recompense the ionic flux of electrolytes, decreasing the growth of lithium dendrites. The stretched molecular channels can also accelerate the transport of Li ions. The combined effects enable a high Coulombic efficiency of 97.0% for 250 cycles in lithium (Li)||copper (Cu) cell and a stable symmetric plating/stripping behavior over 2000 h at 3 mA cm-2 with ultrahigh Li utilization of 50%. Furthermore, the full cell coupled with PHL-Cu@Li anode and LiFePO4 cathode exhibits long-term cycle stability with high-capacity retention of 95.9% after 900 cycles. Impressively, the full cell paired with LiNi0.87Co0.1Mn0.03O2 maintains a discharge capacity of 170.0 mAh g-1 with a capacity retention of 84.3% after 100 cycles even under harsh condition of ultralow N/P ratio of 0.83. This facile strategy will widen the potential application of LiNO3 in ester-based electrolyte for practical high-voltage LMBs.
Collapse
Affiliation(s)
- Haofan Duan
- Hunan Provincial Key Laboratory of Thin Film Materials and Devices, School of Material Sciences and Engineering, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Yu You
- Hunan Provincial Key Laboratory of Thin Film Materials and Devices, School of Material Sciences and Engineering, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Gang Wang
- Hunan Provincial Key Laboratory of Thin Film Materials and Devices, School of Material Sciences and Engineering, Xiangtan University, Xiangtan, 411105, People's Republic of China.
| | - Xiangze Ou
- Hunan Provincial Key Laboratory of Thin Film Materials and Devices, School of Material Sciences and Engineering, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Jin Wen
- Hunan Provincial Key Laboratory of Thin Film Materials and Devices, School of Material Sciences and Engineering, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Qiao Huang
- Hunan Provincial Key Laboratory of Thin Film Materials and Devices, School of Material Sciences and Engineering, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Pengbo Lyu
- Hunan Provincial Key Laboratory of Thin Film Materials and Devices, School of Material Sciences and Engineering, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Yaru Liang
- Hunan Provincial Key Laboratory of Thin Film Materials and Devices, School of Material Sciences and Engineering, Xiangtan University, Xiangtan, 411105, People's Republic of China.
| | - Qingyu Li
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Jianyu Huang
- Hunan Provincial Key Laboratory of Thin Film Materials and Devices, School of Material Sciences and Engineering, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Yun-Xiao Wang
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2500, Australia
| | - Hua-Kun Liu
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2500, Australia
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Shi Xue Dou
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2500, Australia
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Wei-Hong Lai
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2500, Australia.
| |
Collapse
|
6
|
Jiang Z, Deng Y, Mo J, Zhang Q, Zeng Z, Li Y, Xie J. Switching Reaction Pathway of Medium-Concentration Ether Electrolytes to Achieve 4.5 V Lithium Metal Batteries. NANO LETTERS 2023; 23:8481-8489. [PMID: 37669545 DOI: 10.1021/acs.nanolett.3c02013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Pursuing high-energy-density lithium metal batteries (LMBs) necessitates the advancement of electrolytes. Despite demonstrating high compatibility with lithium metal anodes (LMAs), ether-based electrolytes face challenges in achieving stable cycling at high voltages. Herein, we propose a strategy to enhance the high-voltage stability of medium-concentration (∼1 M) ether electrolytes by altering the reaction pathway of ether solvents. By employing a 1 M lithium difluoro(oxalato)borate in dimethoxyethane (LiDFOB/DME) electrolyte, we observed that LiDFOB displays a pronounced tendency for decomposition over DME, leading to a modification in the decomposition pathway of DME. This modification facilitates the formation of a stable organic-inorganic hybrid interface. Utilizing such an electrolyte, the Li-LCO cell demonstrates a discharge specific capacity of 146 mAh g-1 (5 C) and maintains retention of 86% over 1000 cycles at 2 C under a 4.5 V cutoff voltage. Additionally, the optimized ether electrolyte demonstrated outstanding cycling performance in Li-LCO full cells under practical conditions.
Collapse
Affiliation(s)
- Zhipeng Jiang
- School of Materials Science and Engineering, Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials of Ministry of Education, Anhui University of Technology, Maanshan 243002, China
| | - Yu Deng
- School of Materials Science and Engineering, Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials of Ministry of Education, Anhui University of Technology, Maanshan 243002, China
| | - Jisheng Mo
- School of Materials Science and Engineering, Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials of Ministry of Education, Anhui University of Technology, Maanshan 243002, China
| | - Qingan Zhang
- School of Materials Science and Engineering, Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials of Ministry of Education, Anhui University of Technology, Maanshan 243002, China
| | - Ziqi Zeng
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yongtao Li
- School of Materials Science and Engineering, Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials of Ministry of Education, Anhui University of Technology, Maanshan 243002, China
| | - Jia Xie
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
7
|
Wang B, Ren Y, Zhu Y, Chen S, Chang S, Zhou X, Wang P, Sun H, Meng X, Tang S. Construction of Co 3 O 4 /ZnO Heterojunctions in Hollow N-Doped Carbon Nanocages as Microreactors for Lithium-Sulfur Full Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300860. [PMID: 37078796 PMCID: PMC10323615 DOI: 10.1002/advs.202300860] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/11/2023] [Indexed: 05/03/2023]
Abstract
Lithium-sulfur (Li-S) batteries are promising alternatives of conventional Li-ion batteries attributed to their remarkable energy densities and high sustainability. However, the practical applications of Li-S batteries are hindered by the shuttling effect of lithium polysulfides (LiPSs) on cathode and the Li dendrite formation on anode, which together leads to inferior rate capability and cycling stability. Here, an advanced N-doped carbon microreactors embedded with abundant Co3 O4 /ZnO heterojunctions (CZO/HNC) are designed as dual-functional hosts for synergistic optimization of both S cathode and Li metal anode. Electrochemical characterization and theoretical calculations confirm that CZO/HNC exhibits an optimized band structure that effectively facilitates ion diffusion and promotes bidirectional LiPSs conversion. In addition, the lithiophilic nitrogen dopants and Co3O4/ZnO sites together regulate dendrite-free Li deposition. The S@CZO/HNC cathode exhibits excellent cycling stability at 2 C with only 0.039% capacity fading per cycle over 1400 cycles, and the symmetrical Li@CZO/HNC cell enables stable Li plating/striping behavior for 400 h. Remarkably, Li-S full cell using CZO/HNC as both cathode and anode hosts shows an impressive cycle life of over 1000 cycles. This work provides an exemplification of designing high-performance heterojunctions for simultaneous protection of two electrodes, and will inspire the applications of practical Li-S batteries.
Collapse
Affiliation(s)
- Biao Wang
- National Laboratory of Solid State MicrostructuresCollaborative Innovation Center of Advanced MicrostructuresCollege of Engineering and Applied SciencesNanjing UniversityJiangsu210093China
| | - Yilun Ren
- National Laboratory of Solid State MicrostructuresCollaborative Innovation Center of Advanced MicrostructuresCollege of Engineering and Applied SciencesNanjing UniversityJiangsu210093China
| | - Yuelei Zhu
- National Laboratory of Solid State MicrostructuresCollaborative Innovation Center of Advanced MicrostructuresCollege of Engineering and Applied SciencesNanjing UniversityJiangsu210093China
| | - Shaowei Chen
- National Laboratory of Solid State MicrostructuresCollaborative Innovation Center of Advanced MicrostructuresCollege of Engineering and Applied SciencesNanjing UniversityJiangsu210093China
| | - Shaozhong Chang
- National Laboratory of Solid State MicrostructuresCollaborative Innovation Center of Advanced MicrostructuresCollege of Engineering and Applied SciencesNanjing UniversityJiangsu210093China
| | - Xiaoya Zhou
- National Laboratory of Solid State MicrostructuresCollaborative Innovation Center of Advanced MicrostructuresCollege of Engineering and Applied SciencesNanjing UniversityJiangsu210093China
| | - Peng Wang
- National Laboratory of Solid State MicrostructuresCollaborative Innovation Center of Advanced MicrostructuresCollege of Engineering and Applied SciencesNanjing UniversityJiangsu210093China
| | - Hao Sun
- Frontiers Science Center for Transformative MoleculesSchool of Chemistry and Chemical Engineeringand Zhangjiang Institute for Advanced StudyShanghai Jiao Tong UniversityShanghai200240China
| | - Xiangkang Meng
- National Laboratory of Solid State MicrostructuresCollaborative Innovation Center of Advanced MicrostructuresCollege of Engineering and Applied SciencesNanjing UniversityJiangsu210093China
| | - Shaochun Tang
- National Laboratory of Solid State MicrostructuresCollaborative Innovation Center of Advanced MicrostructuresCollege of Engineering and Applied SciencesNanjing UniversityJiangsu210093China
| |
Collapse
|
8
|
Liu J, Liu Y, Li T, Liang L, Wen S, Zhang Y, Liu G, Ren F, Wang G. Efficient Regulation of Polysulfides by Anatase/Bronze TiO 2 Heterostructure/Polypyrrole Composites for High-Performance Lithium-Sulfur Batteries. Molecules 2023; 28:molecules28114286. [PMID: 37298762 DOI: 10.3390/molecules28114286] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/14/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Despite having ultra-high theoretical specific capacity and theoretical energy density, lithium-sulfur (Li-S) batteries suffer from their low Coulombic efficiency and poor lifespan, and the commercial application of Li-S batteries is seriously hampered by the severe "shuttle effect" of lithium polysulfides (LiPSs) and the large volume expansion ratio of the sulfur electrode during cycling. Designing functional hosts for sulfur cathodes is one of the most effective ways to immobilize the LiPSs and improve the electrochemical performance of a Li-S battery. In this work, a polypyrrole (PPy)-coated anatase/bronze TiO2 (TAB) heterostructure was successfully prepared and used as a sulfur host. Results showed that the porous TAB could physically adsorb and chemically interact with LiPSs during charging and discharging processes, inhibiting the LiPSs' shuttle effect, and the TAB's heterostructure and PPy conductive layer are conducive to the rapid transport of Li+ and improve the conductivity of the electrode. By benefitting from these merits, Li-S batteries with TAB@S/PPy electrodes could deliver a high initial capacity of 1250.4 mAh g-1 at 0.1 C and show an excellent cycling stability (the average capacity decay rate was 0.042% per cycle after 1000 cycles at 1 C). This work brings a new idea for the design of functional sulfur cathodes for high-performance Li-S battery.
Collapse
Affiliation(s)
- Jing Liu
- School of Materials Science and Engineering, Provincial and Ministerial Co-Construction of Collaborative Innovation Center for Non-Ferrous Metal New Materials and Advanced Processing Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Yong Liu
- School of Materials Science and Engineering, Provincial and Ministerial Co-Construction of Collaborative Innovation Center for Non-Ferrous Metal New Materials and Advanced Processing Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Tengfei Li
- School of Materials Science and Engineering, Provincial and Ministerial Co-Construction of Collaborative Innovation Center for Non-Ferrous Metal New Materials and Advanced Processing Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Longlong Liang
- School of Materials Science and Engineering, Provincial and Ministerial Co-Construction of Collaborative Innovation Center for Non-Ferrous Metal New Materials and Advanced Processing Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Sifan Wen
- School of Materials Science and Engineering, Provincial and Ministerial Co-Construction of Collaborative Innovation Center for Non-Ferrous Metal New Materials and Advanced Processing Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Yue Zhang
- School of Materials Science and Engineering, Provincial and Ministerial Co-Construction of Collaborative Innovation Center for Non-Ferrous Metal New Materials and Advanced Processing Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Guilong Liu
- Key Laboratory of Function-Oriented Porous Materials of Henan Province, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Fengzhang Ren
- School of Materials Science and Engineering, Provincial and Ministerial Co-Construction of Collaborative Innovation Center for Non-Ferrous Metal New Materials and Advanced Processing Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Guangxin Wang
- School of Materials Science and Engineering, Provincial and Ministerial Co-Construction of Collaborative Innovation Center for Non-Ferrous Metal New Materials and Advanced Processing Technology, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
9
|
Tan J, Li X, Fang Z, Shen J. Designing a Stable Solid Electrolyte Interphase on Lithium Metal Anodes by Tailoring a Mg Atom Center and the Inner Helmholtz Plane for Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17893-17903. [PMID: 36996578 DOI: 10.1021/acsami.3c00977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Arising from the extraordinary theoretical energy density, rechargeable lithium-sulfur (Li-S) batteries have been reputed as one of the most appealing options for next-generation high-performance energy storage and conversion devices. Unfortunately, their industrial implementation has been strongly governed by the formation of Li dendrites caused by the unstable solid electrolyte interphase (SEI) film. Herein, we report a novel electrolyte by introducing the Mg(NO3)2 additive to suppress the growth of Li dendrites, further improving the cycling lifetime of Li-S batteries. On the one hand, Mg2+ can rapidly react with Li atoms to generate Mg atoms, replacing the Li atoms on the top surface of Li metal and forming the Mg center simultaneously. On the other hand, NO3- can be adsorbed in the inner Helmholtz plane and reduced as an inorganic-rich SEI film for stabilizing the Li metal anode when the electrolyte comes in contact with Li metal, effectively mitigating the formation of Li dendrites. Combining the experimental results and theoretical calculations, we confirm that the Mg atom center and the inorganic-rich SEI film are both beneficial for enhancing the electrochemical performance of Li-S batteries. This work provides a new insight into the electrolyte additive and a possible alternative for the design of high-performance Li-S batteries beyond the LiNO3 additive.
Collapse
Affiliation(s)
- Jian Tan
- Institute of Special Materials and Technology, Fudan University, Shanghai 200433, China
- Department of Materials Science, Fudan University, Shanghai 200433, China
| | - Xuanyang Li
- Institute of Special Materials and Technology, Fudan University, Shanghai 200433, China
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Zhan Fang
- Institute of Special Materials and Technology, Fudan University, Shanghai 200433, China
- Department of Materials Science, Fudan University, Shanghai 200433, China
| | - Jianfeng Shen
- Institute of Special Materials and Technology, Fudan University, Shanghai 200433, China
| |
Collapse
|